What You Need to Know About Red Light Therapy and Homeostasis

Our bodies are in constant need of replenishing our cells with oxygen, nutrients, and ATP energy to stay on top of our day to day activities. Also, the optimal function of our cells boils down to maintaining the balance that our body needs. This is also known as homeostasis.

Homeostasis Defined

The scientific definition of homeostasis is in a state of equilibrium, wherein the body’s chemical and physical processes are stable. The balance of the body is dependent on a plethora of factors, such as body temperature, calorie intake, level of blood sugar, the balance of fluid, and pH levels.

These factors are constantly changing and require regulation. They also adapt to changing environments like temperature, light, and activities. Reaching homeostasis requires balance for the body to reach its optimal state. This is present in humans' biology and animals' biology because it determines physical and mental performance, even stress response.

Homeostasis in Cellular Energy

The mitochondria break down food and oxygen to produce ATP energy for the body during the cellular respiration process. Healthy light intake is important in cellular energy to stimulate the mitochondria and efficiently produce ATP energy without inflammation and oxidative stress that may disrupt the cellular respiration process. Red and NIR light therapy enhances cellular and mitochondrial function to ensure that the cellular respiration process works efficiently.

Homeostasis in Body Temperature

Our bodies respond to changes in external temperature through sweating and shivering. These internal temperature processes regulate the body to maintain a temperature balance. The normal body temperature is about 98.6 degrees Fahrenheit. When the body is at a normal temperature, it’s easier to perform well. It can also indicate homeostasis and balance in the body, which we naturally try to achieve. On the other hand, experiencing a fever or being exposed to the cold can make it hard to function well for a long time.

Homeostasis and Calcium Levels

The body’s calcium is usually found in the bones and teeth, but the calcium in the blood requires constant maintenance at about 10 mg/dL. Calcium is essential for blood circulation, coagulation, and bone mineralization. When calcium is low, you may suffer from an irregular heartbeat and other health risks. Meanwhile, when calcium is high, the body may feel exhausted and sluggish because of the nervous system's inactivity. Skeletal, endocrine, and digestive systems in the bodywork hand in hand to maintain basic calcium homeostasis and balance.

Imbalance in the Body

The natural and continuous goal of the body in homeostasis, but many factors are at play. When we use our digestive, respiratory systems, and all the other organs, we need the necessary energy to process nutrients from food, oxygen, and light. The bodily systems are interdependent with one another and need each other to maintain balance.

When one system is lacking, the body naturally compensates by getting from another system to maintain balance. An example is a homeostasis in calcium levels in the bloodstream, which relies on food intake. If the diet lacks calcium, the body gets calcium from the bones, which technically regulates the calcium needed in the bloodstream, but eventually, it will make the bones weak and brittle.

The resourcefulness of the body to shift functions is a great deal. Still, in the long run, it may lead to serious health problems, possibly building up deficiencies and difficulties over time. It is imperative to be aware of the body’s balance and how diet, exercise, and light exposure are interconnected.

Healthy Light’s Effects on Biological Balance and Good Health

Light empowers the cells and enhances the cellular respiration process, creating ATP energy more efficiently. Aside from being essential for our life on earth, having enough light intake is an indication of biological balance. In fact, not getting your regular dose of sunlight may result in inflammation, sluggishness, off circadian rhythms, and poor sleeping habits. Most of the time, people don’t get enough light from their environment since they stay indoors and are surrounded by artificial light.

Being indoors is not how bodies are designed. We are programmed to thrive when our cells intake a good amount of healthy light. Not enough sunlight exposure can make the body imbalanced and lead to decreased energy production and Vitamin D.

Red Light Therapy and Homeostasis

You must be intentional in spending time outdoors to ensure that your body gets the amount of healthy light it requires. However, given the circumstances and limitations that we have, most people really do not get enough natural light, which red light therapy can solve.

Red light therapy is a non-invasive treatment that delivers red and NIR light wavelengths to the skin and cells and helps the mitochondria in cells produce enough ATP energy. Red light therapy helps keep the body and cells balanced, giving enough energy and power to the body even if there’s not enough light in the environment.

Final Thoughts

Our bodies function better when we reach biological balance or homeostasis. A balanced cellular environment indicates good health, and getting healthy light is an important variable to biological balance, on top of exercise, diet, and sleep. Red light therapy helps promote homeostasis and improve overall health by supporting a more efficient cellular environment. Red and NIR light wavelengths stimulate the mitochondria, producing more ATP energy that empowers the body.

If you want to read more about red light therapy and its benefits, you may go to our red light therapy blog. On the other hand, if you want to see our red light therapy devices breakdown, please don’t hesitate to browse through our catalog.

References

Menon S.G. Goswami P.C. A redox cycle within the cell cycle: ring in the old with the new. Oncogene. 2007;26:1101–1109. [PubMed] [Google Scholar]

Burdon R.H. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic. Biol. Med. 1995;18:775–794. [PubMed] [Google Scholar]

Young S. Bolton P. Dyson M. Harvey W. Diamantopoulos C. Macrophage responsiveness to light therapy. Lasers Surg. Med. 1989;9:497–505. [PubMed] [Google Scholar]

el Sayed S.O. Dyson M. Comparison of the effect of multi-wavelength light produced by a cluster of semiconductor diodes and of each individual diode on mast cell number and degranulation in intact and injured skin. Lasers Surg. Med. 1990;10:559–568. [PubMed] [Google Scholar]

5. el Sayed S.O. Dyson M. Effect of laser pulse repetition rate and pulse duration on mast cell number and degranulation. Lasers Surg. Med. 1996;19:433–437. [PubMed] [Google Scholar]

Karu TI, Pyatibrat LV, Kalendo GS, Esenaliev RO. Effects of monochromatic low-intensity light and laser irradiation on adhesion of HeLa cells in vitro. 1996

Castro KMR, de Paiva Carvalho RL, Rosa Junior, GM et al. Can Photobiomodulation Therapy (PBMT) Control Blood Glucose Levels and Alter Muscle Glycogen Synthesis?

OpenStax, Anatomy & Physiology. Rice University. OpenStax CNX. 2016 Feb.

Klepeis NE, Nelson WC, Ott WR, et al. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Exposure Analysis and Environmental Epidemiology. 2001 May.

Find it interesting? Share it!

Related Posts