Stroke Incidents & Red Light Therapy

According to the Centers for Disease Control and Prevention, approximately 800,000 stroke incidents occur every year. No two-stroke incidents are the same. Stroke patients suffer complications such as loss of motor skills or partial paralysis on one side of the body.

A person can feel excruciating muscle pain, contractions for long periods of time, or spasms during the recovery process. This muscle tightness is known as spasticity or hypertonia. Sometimes patients experience muscle weakness down one side of the body, known as hemiparesis. One of the best treatments for muscle spasticity and strengthening muscle function is physical therapy.

The recovery process is dependent on the continued movement of the affected muscles. For example, some patients are known to keep their affected shoulder tense due to pain from the arm remaining relaxed and hanging. This leads to more complications, pain, and tightness. Everyday tasks such as lifting a fork, sweeping a floor, or driving a car can feel impossible for some. While pain is felt in the shoulder, arm, or leg muscles — these muscles are mostly healthy. It is the brain circuits and nerves between the brain's connection to these body parts that are damaged and need to be strengthened. Often, stroke patients do not find relief from even the strongest pain medication. Regardless, stimulating the muscles and pained areas with physical therapy strengthens the brain's connection and generates the healing process.

The National Library of Medicine has shared a study conducted in 2016 on stroke patients and red light therapy. The study concluded that red light therapy “may contribute to increased recruitment of muscle fibers and, hence, to increase the onset time of the spastic muscle fatigue, reducing pain intensity in stroke patients with spasticity, as has been observed in healthy subjects and athletes.” Another study from The National Library of Medicine on the effect of Photobiomodulation by red light-emitting diodes (LEDs) on nerve regeneration concluded with positive results. It was found in 2010 that “red to near-infrared LEDs have been shown to promote mitochondrial oxidative metabolism. In this study, LED irradiation improved nerve regeneration and increased antioxidation levels in the chamber fluid. Therefore, we propose that antioxidation induced by LEDs may be conducive to nerve regeneration.” Red light therapy works well to stimulate mitochondrial functions in cells and nerves. It can stimulate recovery 4 to 10 times faster than your body’s natural healing process.

Physical therapy is necessary for stroke patients, and when paired with full-body red light therapy, there is the potential to assist efforts towards pain reduction significantly. Photobiomodulation or red light therapy stimulates cells and helps repair the myelin sheath covering nerve fibers to accelerate their healing process and can have a positive effect on repairing broken neural pathways in the brain disrupted by stroke incidents.

In Kaiyan Medical, we develop all types of light therapy devices. We believe in the holistic approach to balance your body.

References

https://www.stroke.org.uk/sites/default/files/pain_after_stroke.pdf

https://pubmed.ncbi.nlm.nih.gov/27299571/

https://pubmed.ncbi.nlm.nih.gov/20358337/#:~:text=Red%20to%20near%2Dinfrared%20LEDs,be%20conducive%20to%20nerve%20regeneration.

Find it interesting? Share it!

Green Light Continues to Show Positive Effects on Migraine Sufferers

Anyone who’s had a migraine knows how debilitating can be - even more so if that person is a chronic migraine sufferer. At its worst, migraines can be all-consuming: you can't open your eyes from the pain, perhaps even suffering from nausea and vomiting. 

Migraines are even more common than you think. They’re a more powerful headache, which usually affects one side of the head. Sometimes they come with warnings, but most times you’ll just get them suddenly, which is probably the most inconvenient part. Migraines can be difficult and painful. You could be having a regular day with no problems, and suddenly you'll get a jolt of pain to your head that feels inescapable.

Dealing with a migraine is often a serious challenge; you can’t just go lie down and take 30-minutes to rest up. It takes hours, even days for a migraine to end. And if you’re working, unable to take multiple days off, this is a serious problem. 

Migraines can happen with or without auras. When they occur with auras, this means you see flickering light, spots, or lines. It can feel like your mind is playing games with you when in reality, it's a migraine forming. 

Migraines without auras are the ones that come without warning; however, mood changes can be an indicator that a migraine is manifesting itself for you. Your eyes could start burning or watering, and your nose could be stuffy right before a migraine. They usually feel like a throbbing pain in your head, as mentioned, often on one side of the head. Neck pains and cramps are also something you could be feeling and experiencing during a migraine. 

They often feel like a tightening of the whole head and body, giving a rather inconvenient sensation. It's not uncommon to experience vertigo and double vision, as well. Migraines sometimes feel incurable, precisely because of the way the symptoms can vary. You can experience one type of migraine and, within a few days, a completely different one. Sometimes they last for minutes and others, hours or days. 

If you, someone you know, or a patient of yours is experiencing migraines frequently and severely, that person has probably seen a doctor for the condition. And though some people have shelves full of prescriptions, many are seeking something less invasive, without side effects, yet still effective. Well, luckily, there is a solution for non-invasive migraine treatment: light therapy lamp treatments.

Light therapy is a way of transforming your overall health. In a light therapy treatment, you not only receive relief for your migraine but also for your general health. LED light therapy health benefits multiply the more invested you are. Light therapy eases the symptoms of whatever may be getting in your way while increasing your energy and improving mood.

How light therapy can help migraines is via green light. While green light therapy has been studied for a while, recent studies are proving its effectiveness against migraines. A new study shows that green light exposure reduced the number of headache days per month by an average of about 60%. The light not only reduced the pain but reduced the time of the migraine, making it shorter and more bearable. Another study showed that immediately after light therapy treatment, patients reported reduced migraine discomfort by 20%. Green light also produces a relaxing effect and has shown a much better result at dealing with migraines long-term than any other form of light. 

So by penetrating into the body’s cells, it regenerates your cellular system, and thus, the whole body. It’s a process that should be done in the darkness, at any given time, for a period of 15-30 minutes. With daily treatments, you are more likely to reap the many benefits of light therapy. 

Kayian's light therapy devices are perfect for at-home treatments or for use in medical clinics, specifically designed for you or your clients’ wants and needs. They are MDA-certified and FDA-approved, ensuring that your light therapy device meets medical and safety standards.

Green Light for Migraines: Does This Therapy Work?


“Migraine is one of the most common neurological conditions in the world, and it’s debilitating,” said Dr. Ibrahim

Green Light

The noninvasive nature of green light exposure makes it an ideal therapeutic candidate for other neurological conditions, such as fibromyalgia or HIV-related pain. Dr. Ibrahim and his team recently completed another clinical study in which people with fibromyalgia tried green light therapy. Like the migraine study, those results are similarly encouraging.

Clinical Study

Pharmacological management of migraines can be ineffective for some patients. Studies previously demonstrated that exposure to green light resulted in antinociception and reversal of thermal and mechanical hypersensitivity in rodent pain models. Given green light-emitting diodes' safety, they evaluated green light as a potential therapy in patients with episodic or chronic migraines.

For the study, they recruited (29 total) patients, of whom seven had episodic migraines, and 22 had chronic migraines. They used a one-way cross-over design consisting of exposure for 1–2 hours daily to the white light-emitting diodes for 10 weeks, followed by a 2-week washout period followed by exposure for 1–2 hours daily green light-emitting diodes for 10 weeks. Patients were allowed to continue current therapies and to initiate new treatments as directed by their physicians. Outcomes consisted of patient-reported surveys. The primary outcome measure was the number of headache days per month. Secondary outcome measures included patient-reported changes in the headaches' intensity and frequency over a two-week period and other quality of life measures, including the ability to fall and stay asleep and ability to perform work. Changes in pain medications were obtained to assess potential reduction.

When seven episodic migraine and 22 chronic migraine patients were analyzed as separate cohorts, white light-emitting diodes produced no significant change in headache days in either episodic migraine or chronic migraine patients. Combining data from the episodic migraine and chronic migraine groups showed that white light-emitting diodes produced a small but statistically significant reduction in headache days (days ± SEM) 18.2 ± 1.8 to 16.5 ± 2.01 days. Green light-emitting diodes resulted in a significant decrease in headache days from 7.9 ± 1.6 to 2.4 ± 1.1 and 22.3 ± 1.2 to 9.4 ± 1.6 in episodic migraine and chronic migraine patients, respectively. While some improvement in secondary outcomes was observed with white light-emitting diodes, more secondary outcomes with significantly greater magnitude, including assessments of the quality of life, Short-Form McGill Pain Questionnaire, Headache Impact Test-6, and Five-level version of the EuroQol five-dimensional survey without reported side effects, were observed with green light-emitting diodes. Conclusions regarding pain medications reduction with green light-emitting diode exposure were not possible. No side effects of light therapy were reported. None of the patients in the study reported initiation of new therapies.

Green light-emitting diodes significantly reduced the number of headache days in people with episodic migraines or chronic migraines. Additionally, the green light-emitting diodes significantly improved multiple secondary outcome measures, including quality of life, intensity, and headache attack duration. As no adverse events were reported, the green light-emitting diodes may provide a treatment option for those patients who prefer non-pharmacological therapies or may be considered in complementing other treatment strategies. The limitations of this study are the small number of patients evaluated. The positive data obtained support the implementation of larger clinical trials to determine the possible effects of green light-emitting diode therapy.


This study is registered with clinicaltrials.gov under NCT03677206.

https://journals.sagepub.com/doi/10.1177/0333102420956711

Work from Home, Light Therapy Style

This past year has shaken us up, leaving many of us in new routines that we’re still adjusting to. Unless you’re an essential worker, many of us are now working from home to reduce contact with others. Though working from home was a dream for many, it’s safe to say we didn’t imagine things working from home looking like this.  

The quick transition from in-office to working from home has left many unprepared. Aside from working under stressful conditions, most people simply brought home their laptop, thinking this would be a short-term situation. But things didn’t go as planned.

A year has passed, and those same people are still working from their kitchen table. The problem? Working from home can do more harm than good when it comes to our mental and physical health. And with that, there’s an increased risk of burning out, injuring yourself from a lack of proper office equipment, and the blurred lines between one’s personal and work life. 

So how do you divide work life from home life if your home has become your workplace? 

When all these issues compile on top of each other, it’s a recipe for disaster. More people who work from home are experiencing neck and joint pain, increased screen time, poor sleep, eye strain, and heightened stress and fatigue levels. 

Naturally, most doctors will say the remedies for these symptoms is to reduce stress by working out, meditating, going into nature, taking more breaks, massaging sore muscles, or working with proper equipment. But with lockdowns and quarantines implemented, those solutions aren’t necessarily available. 

However, red light therapy is an all-in-one treatment therapy that can promote quality sleep, reduced stress, and alleviate neck and joint pain. 

But how does red light therapy work? 

Let’s take a look at how light therapy treats neck and shoulder pain.

Most treatments for neck and shoulder pain consist of physical therapy, massage, or pain relief medication. But red light therapy has proven to be a non-invasive option for significantly reducing neck and shoulder pain. 

Red light therapy works by reducing inflammation, which is usually both the cause and symptom of neck and shoulder pain. Red and infrared light penetrates through the skin, reaching the cells that produce energy (adenosine triphosphate) in the mitochondria. By increasing the function of the mitochondria, cells make more adenosine triphosphate (ATP) and begin the process of rejuvenating and repairing themselves.

When inflammation occurs in the body, red light therapy repairs those damaged cells in the muscles, tendons, and ligaments, reducing the pain felt in the neck and shoulders.

However, as we stated earlier, red light therapy isn’t only for neck and joint pain. When it comes to inflammation, it occurs everywhere in the body, including the eyes. 

When working from home, we are typically spending three more hours per day in front of our electronic devices. This has a serious impact on eyesight and overall well being. Research has shown that red light therapy treatments can help heal the eyes from injury, reduce inflammation, and protect against vision loss. 

As we spend more time in front of our devices, we experience more fatigue and reduced quality of sleep. Red light therapy helps trigger our natural circadian rhythm and promotes improved sleep, thus reducing fatigue. 

Working from home hasn’t been the dream we’ve all hoped for. In fact, it’s negatively impacted our mental and physical health. However, there’s a solution to your symptoms and it’s red light therapy. 

Kaiyan Medical manufactures MDA-certified and FDA-approved laser light therapy devices, ideal for people who are experiencing symptoms from working from home, including eye strain, fatigue, stress, and neck and shoulder pain. 




Light Therapy & C-sections

The experience of transformation from womanhood into motherhood is a privilege reserved exclusively for women. Pregnancy and childbirth are wonderful and remarkable moments of life. Giving birth to a child can be one of the most joyful experiences too. Naturally, expectant mothers spend a lot of time thinking about how they will give birth. Although most people believe that vaginal birth is the best way to deliver, sometimes a Caesarean section cannot be avoided. As well, labor pain is one of the most intense pains experienced by women, which leads to an increase in the number of women opting to undergo a cesarean delivery. Pharmacological and nonpharmacological analgesia methods are used to control labor pain. Epidural analgesia is the most commonly used pharmacological analgesia method. However, it may have side effects on the fetus and the mother. Light-emitting diode (LED) photobiomodulation is an effective and noninvasive alternative to pharmacological methods.

Caesarean section was introduced in clinical practice as a lifesaving procedure both for the mother and the baby. It is a surgical procedure in which the incision is made on the products of conception. Caesarean birth is often used as a prophylactic measure to alleviate the problems of birth, such as cephalo pelvic disproportion, failure to progress in labor or fetal distress. A major concern in maternal and child health nursing is the increasing number of caesarean birth being performed annually. In India, primary caesarean birth is about 30.2% of births. The majority of the states are within the WHO specified range of Caesarean section (5 to 15%). Among that, five states are above the range and 12 states below the specified range. Reports also say that the prevalence of Caesarean section is generally more in the southern states. After the baby is born via C-section, the result is a wound that must heal, and pain is common during this healing process.

Wound healing acceleration and pain management in women who underwent the cesarean surgery could help them to return to their normal functioning, especially to begin breastfeeding their newborns as one of the most important aspects of newborn care. Failure incomplete healing of the wound is one of the probable complications of caesarean section. Post caesarean wound infection due to delayed wound healing and pain are not only a leading cause of prolonged hospital stay but a major cause of the widespread aversion to caesarean delivery in developing countries. Management of those problems is essential to decrease infection, length of the hospital stay, pain, and help to return for normal function.

Mothers who undergo caesarean section should achieve immediate recovery than other surgical patients because of maternal and neonatal wellbeing. Several studies have investigated many approaches and protocols of wound healing and pain management in women undergoing caesarean section. Though different approaches have been introduced, these approaches are still inadequate and unsatisfactory in many patients. Thus it seems that postoperative management in this group of people is more challenging than other surgical patients. Infrared Rays have a therapeutic effect of increasing the blood supply and relieving the pain. This will increase the supply of oxygen and nutrient available to the tissues, accelerate the removal of the waste products, and bring about the resolution of inflammation. When the heat is mild, pain relief is probably due to the sedative effect on the superficial sensory nerve endings. It also helps to achieve muscular relaxation. Infrared rays also have a physiological effect on cutaneous vasodilation due to the liberation of chemical vasodilators, histamine, and similar substance, and a possible direct effects on the blood vessels. Stronger heating of infrared stimulates the superficial nerve endings. It has been noticed that pain is due to the accumulation of waste products, and because of stronger heating, the blood flow increases and removes that waste product, and the pain is relieved. In some cases, the relief of pain is probably associated with muscle relaxation. The muscle relaxes most readily when the tissue is warm. The relief of pain itself facilitates muscle relaxation. So the infrared radiation is considered a choice of Electro Therapy Modality for wound healing and pain among mothers who underwent caesarean.

References

Hopkins K (2000) Are Brazilian women really choosing to deliver by cesarean? Soc Sci Med 51:725–740

https://doi.org/10.1590%2F1806-9282.64.11.1045

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16192541

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10594500

Light & Water: The Fourth Phase

Water has three phases — gas, liquid, and solid; but inside Dr.Pollack’s lab, findings imply the presence of a surprisingly extensive fourth phase that occurs at interfaces. The formal name for this fourth phase is exclusion-zone water, aka EZ water. This finding may have profound implications for chemistry, physics, and biology.

The impact of surfaces on the contiguous aqueous phase is generally thought to extend no more than a few water-molecule layers. However, Dr.Pollack found that colloidal and molecular solutes are profoundly excluded from hydrophilic surfaces' vicinity to distances up to several hundred micrometers. Such large exclusion zones have been observed next to many different hydrophilic surfaces, and many diverse solutes are excluded. Hence, the exclusion phenomenon appears to be quite general.​​

Multiple methods have been applied to test whether the exclusion zone's physical properties differ from those of bulk water. NMR, infrared, and birefringence imaging, as well as measurements of electrical potential, viscosity, and UV-VIS and infrared-absorption spectra, collectively reveal that the solute-free zone is a physically distinct, ordered phase of water. It is much like a liquid crystal. It can co-exist essentially indefinitely with the contiguous solute-containing phase. Indeed, this unexpectedly extensive zone may be a candidate for the long-postulated “fourth phase” of water considered by earlier scientists.​

The energy responsible for building this charged, low entropy zone comes from light. We found that incident radiant energy, including UV, visible, and near-infrared wavelengths, induce exclusion-zone growth in a spectrally sensitive manner. IR is particularly effective. Five-minute radiation exposure at 3.1 µm (corresponding to OH stretch) causes an exclusion-zone-width increase of up to three times. Apparently, incident photons cause some change in bulk water that predisposes constituent molecules to reorganize and build the charged, ordered exclusion zone. How this occurs is under study.​

Photons from ordinary sunlight, then, may have an unexpectedly powerful effect that goes beyond mere heating. It may be that solar energy builds to order and separates charge between the near-surface exclusion zone and the bulk water beyond — the separation effectively creating a battery. This light-induced charge separation resembles the first step of photosynthesis. Indeed, this light-induced action would seem relevant not only for photosynthetic processes but also for all realms of nature involving water and interfaces.​

In conclusion, you can think of water as a battery. It’s excellent to absorb and store energy, and it’s good to transfer that energy from water molecule to water molecule (picture the ripples that happen when you drop a rock in a pond). The water molecules end up moving closer together to stabilize themselves; they become denser and more viscous and store energy in the form of a negative charge. This is EZ water. It’s like a charged battery — it’s carrying that valuable vibrational energy and is ready to deliver it. Using light therapy infrared devices from Kaiyan Medical, you can make your EZ water. The other alternative is to sunbathe naked under the sun, but that can lead you to sunburns, so we suggest our devices.

Ophthalmologists: Light Therapy May be the Solution to Eye Strain and Declining Eyesight

As much as we're advancing in technology, we're paying the price of sight. More and more people are spending their working days in front of a desk, staring at a computer screen. 

Whether we’re at home or on the bus, we're glued to our smartphones or tablets, staying connected to the world around us. What we don't realize is that the more time we spend looking at screens, the worse our vision becomes. 

Staring at your smartphone, laptop, or tablet for too long can lead to tired, itchy, and dry eyes, eventually leading to blurred vision and headaches. There's actually a name for this; it's called Computer vision syndrome

Computer vision syndrome is described as vision-related problems resulting from prolonged usage of digital devices, including computers, smartphones, and tablets. However, other vision-related problems  stem from cataracts, prescription glasses or contact lenses, migraines, age, glaucoma, trauma, and more. 

But with the help of light therapy, it looks like there's a solution to eye strain and declining eyesight. Researchers from the University College of London published their study in the Journals of Gerontology found that red light therapy may help improve eye function through mitochondria and adenosine triphosphate (ATP) interaction.

How do the mitochondria and ATP benefit from red light? The mitochondria produce most of the chemical energy needed for all biochemical reactions within the body. The energy produced is stored as ATP, which then converts into adenosine diphosphate (ADP) or to adenosine monophosphate (AMP). For the human body to stay healthy, ATP is essential for the cellular process. 

Concerning the eyes, the retina ages faster than any other in the body, according to Glen Jeffrey, lead study author and neuroscience professor at University College London's Institute of Ophthalmology. Glen adds that up to 70% of the ATP in the retinas will decline over a person's lifetime, which causes reduced eye function.  

This is where red light therapy plays an important role in improving eye function and vision. It's believed that red light therapy increases ATP production in the mitochondria, improving and restoring cellular energy, keeping your eyes healthy and functioning optimally. 

In the study, researchers tested the eye function and sensitivity of 21 participants between 28 and 72 without pre-existing eye diseases. The participants were given a small LED light, which they had to look directly into the light for three minutes a day over two weeks. The results were extremely interesting. For those under 40, they did not see any measurable differences. However, those over 40 experienced significant improvements in their ability to differentiate between colors and in sensitivity of up to 20%. 

Glen explains that red light therapy "uses simple brief exposures to light wavelengths that re-charge the energy system that has declined in the retina cells, rather like re-charging a battery." 

Though there are further studies that need to be done, this shines a light on the power of red light to restore eye function. Prior to the study above, other studies have been done in the past; however, this is the first on humans. Yet, previous studies also proved positive effects on retinal performance and damage reversal. 

The future's looking bright for those who have eye issues and want non-invasive treatments. As Glen said, “the technology is simple and very safe.” 

With Kayian Medical’s MDA-certified and FDA-approved red light therapy devices, you can provide clients with non-invasive and effective treatment to improve eye function. 

How Light Therapy Enhances Physical Therapy Treatment

Though laser technology started with Albert Einstein, the technology didn’t evolve until the 1960’s when a laser prototype at Hughes Research Laboratories in Malibu, California, was first built. However, its purpose wasn’t for the medical industry; instead, for the military.

It eventually trickled down into Hollywood when Sci-Fi directors realized its potential for visual effects. But, of course, it didn’t take long for other fields to jump on the laser light bandwagon, including the medicine and rehabilitation industries. From there, the medical industry began to understand laser light’s impact on the human body when it came to healing and recovery.

Low-level (light) laser therapy (LLLT) is used to treat various conditions, including pain relief and inflammation. Over the past ten years, research and technological advancements have fine-tuned low-level light therapy, making the treatment highly effective in providing pain relief and healing treatment.

What is Low-Level Laser Light Therapy?

Before we talk about its capabilities, it’s essential to understand how it functions. Low-level laser light therapy is a non-invasive technique that gives the body a low dose of light to stimulate cellular healing. Laser light therapy targets the specific area in need to increase mobility by reducing pain and inflammation.

Low-level laser light therapy works through a process called photobiomodulation. During this process, the light is absorbed by the body’s tissue, where the cells respond with a physiological reaction, promoting cellular regeneration. The light stimulates cellular metabolism to promote cell growth and the healing of damaged cells.

How Laser Light Affects the Body

There are a couple of ways laser light therapy affects the body. Here’s what laser light therapy does for the body:

  1. Light energy is absorbed by melanin, hemoglobin, and water. The energy dissolves into heat, creating a soothing and warm sensation. The warming sensation helps patients feel relaxed.
  2. There’s an increase in ATP production in the mitochondria through light energy, the cell’s powerhouse. With increased ATP production, more energy is available for the healing process.
  3. Light energy aids with the release of nitric oxide, which enhances the circulation of damaged tissue. Increased circulation allows for improved oxygen exchange, nutrient exchange, and waste removal.
  4. Light energy releases crucial chemicals that help reduce inflammation.

So can laser light therapy be used alongside physical therapy? The answer is yes. In fact, the two treatments complement each other perfectly.

The Perfect Pair: Laser Light Therapy and Physical Therapy

With patients experiencing chronic or acute pain, the feeling of pain isn’t the main issue. However, patients can reduce pain and inflammation symptoms through laser light therapy while undergoing physical therapy treatments. Laser light therapy is ideal for pre and post-surgical procedures and during rehabilitation.

Patients undergoing laser light therapy will feel warm and soothing healing sensations as well as an immediate reduction in pain after treatment. By reducing pain, patients will improve their physical therapy performance and reduce their healing time. Ideally, four to six laser light therapy sessions are recommended to patients to receive the best results.

Whether you’re looking to improve your chiropractic, dermatology, medical or physical therapy practice, laser light therapy can provide your patients with the extra care they need to reduce chronic or acute pain and inflammation symptoms.

With many laser light products on the market, you want to make sure you’re investing in a medical-grade laser light device for your practice. Kaiyan Medical manufactures MDA-certified and FDA-approved laser light therapy devices, ideal for various medical and rehabilitation industries.

Can Red Light Help Supplement a Keto Weight-loss Diet?

Weight loss is something that many people struggle with, and our modern day lifestyles can make it challenging to prioritize healthy eating and movement. We’re living fast lives, often resorting to highly-processed foods, and skipping out on exercising, all of which are the main contributors to weight gain. 

In 2020, the obesity rate in the U.S. was 42.4%. Though it’s often overlooked, people with a high BMI are at very high risk for cardiovascular diseases, hormonal issues, diabetes, cancer, and musculoskeletal disorders. 

However, in recent years, there’s been a shift in people’s mentalities. Yes, many are still opting for meal replacements and weight loss surgeries; however, others are focusing on eating clean and eliminating preservatives from their diet. Instead of doing quick diet fads, many are trying to change their lifestyle, even turning to alternative eating methods such as the ketogenic diet – a low-carb, high- fat diet that shares similarities to the Atkins diet. Essentially, you eat fewer carbs and replace them with fat. By doing this, the body goes into a state of ketosis, enabling the fat from your diet and body to be burned into energy. 

However, the keto diet does more than just help people lose weight. It reduces blood sugar and insulin levels, sleep disorders, seizures, and other brain disorders. It’s clear that the keto diet does have health benefits aside from weight loss. This diet alone has changed the lives of millions of people around the world. But wait...what does this all have to do with red light therapy? 

Before we talk about red light therapy working alongside keto, it’s crucial to understand the importance of natural light to the human body. Our bodies respond to light the same way it does to carbs, proteins, and fats. Our bodies are built to function with an optimal amount of natural light so that our cells can produce energy

We need light like we need fruits and vegetables. Similar to when we eat junk food, if we’re exposed to an abundance of artificial light, our bodies don’t function optimally. However, we’re spending more time inside than ever, meaning we’re not getting enough natural light. Simply put: it isn’t good for our bodies and minds.

So how do the two work together? If you’re on the keto diet, your body will go into a state of ketosis, which promotes increased weight loss, specifically in the abdominal area. When the body is able to burn fat efficiently, the body works better—this the same goes for red light therapy. 

Red light therapy strengthens the mitochondria inside our cells. The mitochondria are the powerhouse of the cells where energy is created. By improving the function of the mitochondria, a cell produces more ATP (adenosine triphosphate). With an increase in energy, the cells function optimally and are able to regenerate at a faster pace. 

Keto and red light therapy work to naturally enhance our body’s functionality as both operate to enhance the mitochondria. Keto works to burn fatty acids and ketones instead of glucose. With red light therapy, it decreases oxidative stress that slows energy systems. When using red light therapy during a keto diet, your cells are able to work efficiently as both increase energy, physical performance, and weight loss

But red light therapy does more than just enhance your body’s energy and physical performance. Red light therapy improves sleeping patterns by adjusting your circadian rhythm and helping the brain produce natural melatonin. Developing a regular sleep pattern on top of losing weight will only help improve your weight loss journey, as well as balance your hormones. Red light therapy also reduces inflammation and joint pain, which helps the overall weight loss experience. 


If you’re on the keto diet or considering giving it a try, consider easing into the process by supplementing with Lunas’ MDA and FDA-approved red light therapy devices to help aid your weight loss journey.

Pro Athletes Harnessing the Power of Red Light

Originally from https://www.lunaspanel.com/post/pro-athletes-harnessing-the-power-of-red-light


Being a professional athlete is no joke, and when your body is a central part of your job, it needs to be very well taken care of. And even when athletes are doing all the right things to take care of their body, injuries are still widespread in professional sports; but it used to be that their career was over if an athlete was injured. But now, athletes can undergo surgery and pop back up on the court or field months later. How is that possible?

As most athletes know, a large portion of time is dedicated to repairing muscles and alleviating inflammation for the next game. Regardless of the sport, teams spend millions of dollars on professional physical therapists to guarantee their athletes receive the highest physical treatment standard.

The recovery process for an athlete is essential and a determining factor of how well they’ll perform during their careers. You’ll often hear the words “optimizing performance” when discussing the recovery process for athletes. Today, the recovery process isn’t just to heal an athlete but to naturally enhance their performance.

So, how do professional therapists optimize professional athletes’ performance and recovery? Well, red light therapy is turning out to be one of the most effective treatments for these high-performing individuals.

Professional trainers are always looking for natural ways to enhance their player’s performance. With light has proven to be a lead modality, many trainers and athletes use light therapy to enhance the body’s natural healing process. But how does it work?

When used, natural red light penetrates the skin and cells. When the light reaches the mitochondria, it stimulates the production of adenosine triphosphate (ATP). ATP is a natural energy currency in the human body. With an enhanced ATP production, cells in the muscle are optimized and repaired faster.

Hundreds of peer-reviewed clinical trials have backed up the results athletes see on the courts and fields. In 2015, researchers conducted a meta-analysis of placebo-controlled trials, and the results were astounding. They found that most clinical trials showed “significant improvement for the main measures related to performance,” including endurance and speed. And through this meta-analysis, it was concluded that “phototherapy (with lasers and LEDs) improves muscular performance and accelerates recovery when applied before exercise.”

However, red light therapy does more than recover muscle tissue. It also increases muscle strength, ultimately improving physical performance.

A 2016 study researched red light therapy on elite athletes and trained and untrained athletes. What was found was that red light therapy after training could increase muscle mass. So, not only does red light therapy accelerate the recovery process, but it also improves muscle strength.

But what about endurance? Being strong is only one aspect of being an athlete. Endurance is crucial when competing against an opponent. A triple-blind, placebo-controlled trial published in 2018 studied the effects of red light therapy on men and women undergoing endurance training on treadmills. It was found that red light therapy pre-exercise can “increase the time-to-exhaustion and oxygen uptake and also decrease the body fat in healthy volunteers when compared to placebo.”

Another study from 2018 completed by Brazilian researchers found that after their randomized, triple-blind, placebo-controlled trial on pro soccer players, those who underwent red light therapy stayed longer on the playing field. It was concluded that light therapy “…had a significant improvement in all the biochemical markers evaluated…pre-exercise [light] therapy can enhance performance and accelerate recovery…”.

Peer-reviewed clinical trials worldwide have all concluded the same thing: red light therapy works for increasing athletic performance levels. Luna’s red light therapy device can help professional athletes and the rest of us exercise regularly, recover from injuries, and improve our physical and muscular health.

Laser Acupuncture Treatment?

Acupuncture under traditional Chinese medicine is an alternative medicine that treats patients by needle insertion and manipulation at acupoints (APS) in the body. Acupuncture causes collagen fiber contraction, resulting in soluble actin polymerization and actin stress fiber formation, affecting the nervous and immune systems. Besides, acupuncture leads to molecular changes at APs in tissues at the cellular level. The local physicochemical reactions at the APs send signals to the organs via the tissue fluid and blood circulatory systems for optimal adjustment of the body’s organs.

It is believed to have been practiced for more than 2500 years, and this modality is among the oldest healing practices in the world. Acupuncture is based on the idea that living beings have Qi, defined as inner energy, and that it is an imbalance in Qi or interruption in the flow of Qi that causes illness and disease. Acupuncture therapy is focused on rebalancing the flow of Qi, and the practice is progressively gaining credibility as a primary or adjuvant therapy by Western medical providers.

Laser Acupuncture

Kaiyan Medical has been working to create ergonomic laser pens to simulate the acupuncture process. Laser acupuncture (LA) — non-thermal, low-intensity laser irradiation to stimulate acupuncture points — has become more common among acupuncture practitioners in recent years. LA is a safer, pain-free alternative to traditional acupuncture, with minimal adverse effects and greater versatility. LA has many features that make it an attractive option as a treatment modality, including minimal sensation, short duration of treatment, and minimal risks of infection, trauma, and bleeding complications.

What is the Difference

In acupuncture, needles are inserted at specific acupoints, which may be manually stimulated in various ways, including gentle twisting or up-and-down movements. Besides, the depth of needle penetration is also manipulated by the acupuncture practitioner. The patient may report sensations of De Qi, which are feelings of pressure, warmth, or tingling in the superficial layers of the skin. Many theories to explain how acupuncture works have been proposed, including the gate-control theory of pain and the endorphin-and-neurotransmitter. Others have postulated that acupuncture modulates the transmission of pain signals and alters the release of endogenous endorphins and neurotransmitters, resulting in physiologic changes.

One clear difference between needle acupuncture and LA is that LA does not physically penetrate the skin. Despite a greater understanding of LA, it is unclear how non-thermal, low-intensity laser irradiation stimulates acupoints. The mechanism of LA may be entirely separate from our present understanding of acupuncture. Current theories postulate that LLLT could positively affect modulating inflammation, pain, and tissue repair, given appropriate irradiation parameters.

Anti-Inflammatory Effect of Lasers

Inflammation reduction comparable to that of non-steroidal anti-inflammatory drugs has been reported with animal studies that used red and near-infrared LLLT, with laser outputs ranging from 2.5 to 100 mW and delivered energy doses ranging from 0.6 to 9.6 Joules. Human studies have shown similar anti-inflammatory effects with LLLT, which may account for many associated positive clinical results.

Cellular Effects of LLLT

LLLT improves cell physiology by increasing the overall cell redox potential toward greater oxidation and increased reactive oxygen species while simultaneously decreasing reactive nitrogen species. These redox state changes activate numerous intracellular-signaling pathways, including nucleic acid synthesis, protein synthesis, enzyme activation, and cell cycle progression.17 LLLT also alters the expression of genes that can enhance cell growth and inhibit cell apoptosis.16 These cellular effects of LLLT might reflect its ability to induce long-term changes in cells and LLLT’s benefits for wound healing, nerve regeneration, and inflammation reduction.

LLLT Characteristics

Red and infrared laser wavelengths are absorbed by cytochrome C oxidase protein in the mitochondrial cell membranes. This absorption is associated with increased adenosine triphosphate production by the mitochondria, which. In turn, it increases intracellular calcium (Ca2+) and cyclic adenosine monophosphate, which serve as secondary messengers that aid in regulating multiple body processes, including signal transfer in nerves and gene expression.

The power density of a laser, defined as laser energy supplied per area (W/cm2), influences its energy penetration depth. A 50-mW laser with a beam size of 1 cm2 has an energy density of 0.05 W/cm2. In contrast, the same power laser with a beam size of 1 mm2 has an energy density of 5 W/cm2 — a higher energy density results in deeper energy penetration through the skin.

Energy transmission through the skin is also affected by the absorption of light energy by skin structures. Light wavelengths from 650 to 900 nm have the best penetration through the skin. Lower wavelengths are absorbed by melanin and hemoglobin, and wavelengths longer than 900 nm are absorbed by water. With a well-focused laser beam, red wavelengths (~ 648 nm) can penetrate 2–4 cm beneath the skin surface, and infrared wavelengths (~ 810 nm) can penetrate up to 6 cm.

Now Kaiyan has made LLLT easier to use. Kaiyan medical devices can treat multiple acupoints simultaneously at the same time.


How Red Light Therapy Combats Arthritis Pain & Stiffness

When it comes to muscle and joint stiffness, osteoarthritis, and arthritis, the one thing in common is pain and inflammation. When suffering from joint and muscular conditions, a person’s range of motion decreases, and swelling and skin redness increase, making everyday tasks a struggle.

Many young to middle-aged people are unaware of these conditions as they’ve been labeled as conditions mainly for the elderly; however, things have changed.

Though these conditions are common within the elderly community, we’re seeing an increase among young adults. In the United States alone, 23% of adults — over 53 million people — have arthritis, according to the Centers for Disease Control and Prevention (CDC). In other words, joint pain isn’t just for old age, as we once thought.

Rheumatoid arthritis (RA) appears in every 8 in 100,000 people between 18 and 34 years old. Of course, no one — young or old — wants to wake up feeling joint stiffness, swelling, or pain every morning.

However, the old myth that arthritis is untreatable is about to be debunked with light therapy.

Naturally, a medical professional will have to make a conclusive arthritis diagnosis. However, once diagnosed, many people find home treatments to deal with the pain — like light therapy. And the people who are undergoing light therapy are receiving incredible pain relief from their treatment. For example, a study published in the Turkish Journal of Physical Medicine and Rehabilitation found that infrared light treatment on inflammatory arthritis of the spine (spondylitis) encouraged increased function and improved quality of life for participants.

But what’s the science behind red light therapy treating joint conditions? Red light therapy uses low levels of red light to stimulate a natural response to cell performance. The light penetrates through the layers of the dermis, entering the muscles and nerves. As the cells absorb the energy, they become more active, with increased blood flow to the treated area, promoting cell regrowth and regeneration. Through this combination of increased blood flow and cellular activity, it rapidly reduces inflammation and pain.

With the recent advancements in modern technology, those who have arthritis or other joint conditions no longer need to opt for nonsteroidal anti-inflammatory drugs (NSAIDs) or corticosteroids. These forms of the medication come with serious side effects such as edema, heartburn, stomach ulcers, cataracts, bone loss, and elevated blood clots. This alternative non-invasive treatment allows people to choose a drug-free treatment that reduces swelling, inflammation, and pain through red light therapy.

A study published in the National Library of Medicine found that elderly patients who underwent red and infrared therapy treatment had reduced their pain by 50%. Besides, they found participants who underwent red and infrared light therapy had a significant improvement in function. Another study from 2016 saw a substantial reduction in pain and an increased range of motion after five to seven red light therapy treatments for Bouchard’s and Heberden’s osteoarthritis. These studies are only a few examples of how red light therapy shows results as an effective treatment.

A little red light can go a long way for your body, mind, and soul. More and more people recognize the benefits of red light therapy as a natural home treatment. For people suffering from any joint condition, red light therapy will reduce inflammation, eliminating joint and muscle pain.

But there’s more to red light therapy than this. It’s important to be reminded that light therapy also heals other ailments in the body. Red light therapy is effective for injuries, muscle recovery, cancer side effects, skincare, and depression.

With an FDA-approved and MDA-certified Lunas red light therapy device, users can achieve optimal therapeutic results by merely exposing their bare skin to the light for a few minutes per day. Healing yourself doesn’t need a lot of time or money; you need the right tools. Lunas light therapy devices have the power to heal bodies and minds all around the world.

Stroke Incidents & Red Light Therapy

According to the Centers for Disease Control and Prevention, approximately 800,000 stroke incidents occur every year. No two-stroke incidents are the same. Stroke patients suffer complications such as loss of motor skills or partial paralysis on one side of the body.

A person can feel excruciating muscle pain, contractions for long periods of time, or spasms during the recovery process. This muscle tightness is known as spasticity or hypertonia. Sometimes patients experience muscle weakness down one side of the body, known as hemiparesis. One of the best treatments for muscle spasticity and strengthening muscle function is physical therapy.

The recovery process is dependent on the continued movement of the affected muscles. For example, some patients are known to keep their affected shoulder tense due to pain from the arm remaining relaxed and hanging. This leads to more complications, pain, and tightness. Everyday tasks such as lifting a fork, sweeping a floor, or driving a car can feel impossible for some. While pain is felt in the shoulder, arm, or leg muscles — these muscles are mostly healthy. It is the brain circuits and nerves between the brain's connection to these body parts that are damaged and need to be strengthened. Often, stroke patients do not find relief from even the strongest pain medication. Regardless, stimulating the muscles and pained areas with physical therapy strengthens the brain's connection and generates the healing process.

The National Library of Medicine has shared a study conducted in 2016 on stroke patients and red light therapy. The study concluded that red light therapy “may contribute to increased recruitment of muscle fibers and, hence, to increase the onset time of the spastic muscle fatigue, reducing pain intensity in stroke patients with spasticity, as has been observed in healthy subjects and athletes.” Another study from The National Library of Medicine on the effect of Photobiomodulation by red light-emitting diodes (LEDs) on nerve regeneration concluded with positive results. It was found in 2010 that “red to near-infrared LEDs have been shown to promote mitochondrial oxidative metabolism. In this study, LED irradiation improved nerve regeneration and increased antioxidation levels in the chamber fluid. Therefore, we propose that antioxidation induced by LEDs may be conducive to nerve regeneration.” Red light therapy works well to stimulate mitochondrial functions in cells and nerves. It can stimulate recovery 4 to 10 times faster than your body’s natural healing process.

Physical therapy is necessary for stroke patients, and when paired with full-body red light therapy, there is the potential to assist efforts towards pain reduction significantly. Photobiomodulation or red light therapy stimulates cells and helps repair the myelin sheath covering nerve fibers to accelerate their healing process and can have a positive effect on repairing broken neural pathways in the brain disrupted by stroke incidents.

In Kaiyan Medical, we develop all types of light therapy devices. We believe in the holistic approach to balance your body.

References

https://www.stroke.org.uk/sites/default/files/pain_after_stroke.pdf

https://pubmed.ncbi.nlm.nih.gov/27299571/

https://pubmed.ncbi.nlm.nih.gov/20358337/#:~:text=Red%20to%20near%2Dinfrared%20LEDs,be%20conducive%20to%20nerve%20regeneration.

Brainwaves - Get to Know your Brain

Brain waves are oscillating electrical voltages in the brain, measuring just a few millionths of a volt. At the root of all our thoughts, emotions, and behaviors are the communication between neurons within our brains. Brainwaves are produced by synchronized electrical pulses from masses of neurons communicating with each other.

Brainwaves are detected using sensors placed on the scalp. They are divided into bandwidths to describe their functions but are the best thought of as a continuous spectrum of consciousness, from slow, loud, and functional — to fast, subtle, and complex.

It is a handy analogy to think of brainwaves as musical notes — the low-frequency waves are like a deeply penetrating drum beat, while the higher frequency brainwaves are more like a subtle high pitched flute. Like a symphony, the higher and lower frequencies link and cohere with each other through harmonics.

Our brainwaves change according to what we’re doing and feeling. When slower brainwaves are dominant, we can feel tired, slow, sluggish, or dreamy. The higher frequencies are dominant when we feel wired or hyper-alert.

The descriptions that follow are only broad descriptions — in practice, things are far more complex, and brainwaves reflect different aspects of different locations in the brain.

Brainwave speed is measured in Hertz (cycles per second), and they are divided into bands delineating slow, moderate, and fast waves.

Infra-low (

Infra-Low brainwaves (also known as Slow Cortical Potentials) are thought to be the basic cortical rhythms that underlie our higher brain functions. Very little is known about infra-low brainwaves. Their slow nature makes them difficult to detect and accurately measure, so few studies have been done. They appear to play a major role in brain timing and network function.

Delta (δ) Waves (0.5 TO 4HZ) — Sleep

Delta brainwaves are slow, loud brainwaves (low frequency and deeply penetrating, like a drumbeat). They are generated in deepest meditation and dreamless sleep. Delta waves suspend external awareness and are the source of empathy. Healing and regeneration are stimulated in this state, and that is why deep restorative sleep is so essential to the healing process.

Theta (θ) Waves (4 TO 8 HZ) — Deeply Relaxed, Inward-focused

Theta brainwaves occur most often in sleep but are also dominant in deep meditation. Theta is our gateway to learning, memory, and intuition. In theta, our senses are withdrawn from the external world and focused on signals originating from within. Twilight states that we normally only experience fleetingly as we wake or drift off to sleep. In theta, we dream; vivid imagery, intuition, and information beyond our normal conscious awareness. It’s where we hold our ‘stuff,’ our fears, troubled history, and nightmares.

Alpha (α) Waves(8 TO 12 HZ) — Very relaxed, Passive Attention

Alpha brainwaves are dominant during quietly flowing thoughts and in some meditative states. Alpha is ‘the power of now,’ being here, in the present. Alpha is the resting state of the brain. Alpha waves aid overall mental coordination, calmness, alertness, mind/body integration, and learning.

Beta (β) Waves(12 TO 35 HZ) — Anxiety dominant, Active, External Attention

Beta brainwaves dominate our normal waking state of consciousness when attention is directed towards cognitive tasks and the outside world. Beta is a ‘fast’ activity, present when alert, attentive, engaged in problem-solving, judgment, decision making, or focused mental activity.

Beta brainwaves are further divided into three bands; Lo-Beta (Beta1, 12–15Hz) can be thought of as a ‘fast idle’ or musing. Beta (Beta2, 15–22Hz) is the high engagement or actively figuring something out. Hi-Beta (Beta3, 22–38Hz) is a highly complex thought, integrating new experiences, high anxiety, or excitement. Continual high-frequency processing is not a very efficient way to run the brain, as it takes a tremendous amount of energy.

Gamma (γ) Waves(35 TO 42 HZ) — Concentration

Gamma brainwaves are the fastest brain waves (high frequency, like a flute) and relate to the simultaneous processing of information from different brain areas. Gamma brainwaves pass information rapidly and quietly. The most subtle of the brainwave frequencies, the mind has to be quiet to access gamma.

Gamma was dismissed as ‘spare brain noise’ until researchers discovered it was highly active in states of universal love, altruism, and the ‘higher virtues.’ Gamma is also above the frequency of neuronal firing, so how it is generated remains a mystery. It is speculated that gamma rhythms modulate perception and consciousness and that a greater presence of gamma relates to expanded consciousness and spiritual emergence.

New Trial to Test Brain Wave Stimulation as Alzheimer’s Preventative

With a new $1.8 million grant from the Part the Cloud-Gates Partnership Grant Program of the Alzheimer’s Association, researchers at Massachusetts Institute of Technology and Massachusetts General Hospital are launching a new clinical trial to test whether stimulating a key frequency of brain waves with light and sound can prevent the advance of Alzheimer’s disease pathology even before volunteers experience symptoms such as memory impairment.

“Because Alzheimer’s disease leads to neurodegeneration and cognitive decline, the best time for intervention may be before those symptoms even begin,” said Dr. Li-Huei Tsai, Picower Professor of Neuroscience and director of The Picower Institute for Learning and Memory at MIT. “We are hopeful that our safe, non-invasive approach of sensory stimulation of 40Hz gamma brain rhythms can have a preventative benefit for patients. We are very grateful to Part the Cloud-Gates Partnership Grant Program for their support in funding rigorous research to test this exciting possibility.”

In extensive testing in Tsai’s lab with multiple mouse models of Alzheimer’s, the light and sound stimulation technique, called Gamma ENtrainment Using Sensory Stimuli (GENUS), improved cognition and memory, prevented neurodegeneration, and reduced amyloid and tau protein buildups. The research showed that increasing 40Hz brain rhythm power and synchrony stimulated the brain’s immune cells and blood vessels to clear out the toxic proteins. Early results from human testing at MIT show that GENUS is well tolerated and increases 40Hz power and synchrony, just like in the mice.

The new study, conducted in collaboration with neurologist Dr. Keith Johnson at MGH, will enroll 50 volunteers aged 55 or older who show signs of amyloid protein plaque buildup in PET scans but remain cognitively normal. Experimental volunteers will receive an hour of GENUS light and sound stimulation in their homes daily for a year. At regular checkups, the team will monitor GENUS's effect on amyloid buildup via PET scans as well as other biomarkers such as tau and for changes in cognition, sleep, structural and functional MRI, and other indicators of brain function and health.

The trial will be double-blinded, randomized, and controlled, meaning that some volunteers will be exposed to non-GENUS light and sound during the trial to provide a non-treatment comparison group. To ensure that bias does not influence the results, neither the volunteers nor the experimenters will know which group's volunteers are.

References

https://picower.mit.edu/news/new-trial-test-brain-wave-stimulation-alzheimers-preventative

https://brainworksneurotherapy.com/what-are-brainwaves

Story - Green Light for Benign Prostatic Hyperplasia

Paul Hamernik says that “green light” laser surgery has meant he can enjoy his life again. As a stock car racer, Paul Hamernik thought his frequent restroom breaks were an occupational hazard. He accepted that his bladder was small, and his nerves ran wild — until he learned his PSA level was increasing.

“PSA, or prostate-specific antigen, is a normal substance produced by the prostate, usually found in an increased amount in the blood of men who have prostate cancer, infection or inflammation of the prostate, and benign prostatic hyperplasia,” explains Lance Mynderse, M.D., a urologist at Mayo Clinic in Rochester.

“My local doctor suggested I go to Mayo and be evaluated,” says Paul. “He said Mayo had advanced tests and procedures to diagnose and treat prostate conditions that weren’t widely available.”

Fortunately, Paul didn’t have prostate cancer. But, because of his age and PSA level, the clinic invited him to participate in a pharmaceutical trial studying the effect of dutasteride in preventing prostate cancer in men with elevated PSA levels.

“I didn’t know anything about the drug, but I wanted to help advance medical science, so I decided to enroll,” says Paul. “I’ve always been proactive with my health. That’s why I started having my PSA tested early.”

During the four-year, double-blind study, Paul took a medicine — the drug or a placebo — every day. Half-way through the study, he had a prostate biopsy and urine flow analysis.

“I remember having an ultrasound on my bladder after emptying it,” recalls Paul. “The technician thought the ultrasound machine wasn’t working, and she went to get help.”

The equipment was working, and what the technician initially saw proved accurate. Paul’s bladder was holding three times the amount of urine that it should. It had become distended, and he was unable to empty it.

“If I hadn’t been in this clinical trial, being monitored the way I was, this urine flow problem probably would not have been diagnosed until after my kidneys were involved,” says Paul.

“Paul’s bladder problem was caused by an enlarged prostate, which often leads to bladder outlet obstruction and restriction of urine flow,” says Dr. Mynderse. “Paul’s condition was benign prostatic hyperplasia or BPH — a natural aging process that happens in all men.” While all men experience BPH, not all have symptoms — and certainly not as severe as Paul.

This clinical trial identified a problem that normal healthcare wouldn’t have found since Paul didn’t have any complaints, and a urine flow analysis wouldn’t normally be done. Unfortunately, Paul wasn’t a candidate for surgery when his enlarged prostate was diagnosed because his bladder had lost function. “When the bladder becomes that enlarged, it loses much of its elasticity and squeeze,” explains Dr. Mynderse.

At that point, reducing the size of the prostate might not help, as the bladder still can’t empty if it’s not capable of squeezing, even when you eliminate the prostate obstruction. “Therefore, we needed to ensure bladder function would return before scheduling surgery,” says Dr. Mynderse.

What this meant for Paul was regular self-catheterization five times per day. “I was terribly bummed,” says Paul. “First, it’s challenging to find a sterile environment & many places aren’t accommodating.” Paul’s employer offered a special restroom, and he learned some other tricks that helped but didn’t change his situation.

“I ended up clinically depressed because the catheter interfered with my ability to race stock cars, which I’ve done almost all my life,” says Paul. “There’s no support group for catheters, and I felt alone and very odd.”

“Going green” with surgery.

Paul’s diligence paid off. “His bladder function returned, and we were able to schedule a special surgery called photoselective vaporization of the prostate or PVP,” says Dr. Mynderse.

This surgery is often called green light laser surgery because it emits a highly visible green light. “The green light is created by lithium triborate, a chemical used as the lasing medium,” says Dr. Mynderse.

Mayo Clinic urologists pioneered the use of laser energy to treat benign prostatic hyperplasia in the 90s. In fact, Mayo’s Department of Urology is the” green light” laser's birthplace to treat BPH. Today, Mayo Clinic is only one of a handful of medical centers in the U.S. that are considered “Centers of Excellence” using PVP laser therapy to treat BPH.

“During the surgery, we vaporize the prostate through an instrument placed down the urethra, called transurethral — and there’s no cutting,” explains Dr. Mynderse. “We direct the light on the inner surface of the prostate, and there’s minimal bleeding. The by-products of the light energy interaction with the prostate and hemoglobin are bubbles and fine debris.”

Imagine the prostate as an orange. The laser vaporizes or shrinks the fruit or tissue occupying the core and leaves the rind intact. The procedure is performed on an outpatient basis, under anesthesia. “After 12 hours, we remove the catheter, and the patient can urinate immediately,” says Dr. Mynderse. “This is a significant shift in inpatient treatment from the historical standard TURP method.”

Transurethral resection of the prostate (TURP) has been the gold standard surgical treatment for enlarged prostate for decades. However, up to 25% of patients experience complications after TURP, including excessive bleeding, urinary incontinence, and sexual impotence. TURP also subjects patients to risks inherent in any surgical procedure and a hospital stay of 1 to 3 days and a 4 to 6 weeks recovery time.

“I left the hospital the same day and with no pain,” says Paul. “Dr. Mynderse is my hero because he got rid of my catheter, and I enjoy life the way I use to.”


References

https://sharing.mayoclinic.org/2012/12/18/green-light-laser-surgery-treats-bph/

Hyperbaric Chambers - Oxygen Therapy

Hyperbaric Oxygen Therapy

Hyperbaric oxygen therapy involves breathing pure oxygen in a pressurized environment. Hyperbaric oxygen therapy is a well-established treatment for decompression sickness, potential risk of scuba diving. Other conditions treated with hyperbaric oxygen therapy include serious infections, bubbles of air in your blood vessels, and wounds that may not heal due to diabetes or radiation injury.

In a hyperbaric oxygen therapy chamber, the air pressure is increased two to three times higher than normal air pressure. Under these conditions, your lungs can gather much more oxygen than would be possible breathing pure oxygen at normal air pressure.

When your blood carries this extra oxygen throughout your body, this helps fight bacteria and stimulate the release of substances called growth factors and stem cells, which promote healing.

Your body’s tissues need an adequate supply of oxygen to function. When tissue is injured, it requires even more oxygen to survive. Hyperbaric oxygen therapy increases the amount of oxygen your blood can carry. With repeated scheduled treatments, the temporary extra high oxygen levels encourage normal tissue oxygen levels, even after the therapy is completed.

Hyperbaric oxygen therapy is used to treat several medical conditions. And medical institutions use it in different ways. Your doctor may suggest hyperbaric oxygen therapy if you have one of the following conditions:

  • Severe anemia
  • Brain abscess
  • Bubbles of air in your blood vessels (arterial gas embolism)
  • Burns
  • Carbon monoxide poisoning
  • Crushing injury
  • Deafness, sudden
  • Decompression sickness
  • Gangrene
  • Infection of skin or bone that causes tissue death
  • Non-healing wounds, such as a diabetic foot ulcer
  • Radiation injury
  • Skin graft or skin flap at risk of tissue death
  • Traumatic brain injury
  • Vision loss, sudden and painless
Risks

Hyperbaric oxygen therapy is generally a safe procedure. Complications are rare. But this treatment does carry some risk.

Potential risks include:

  • Middle ear injuries, including leaking fluid and eardrum rupture, due to changes in air pressure
  • Temporary nearsightedness (myopia) caused by temporary eye lens changes
  • Lung collapse caused by air pressure changes (barotrauma)
  • Seizures as a result of too much oxygen (oxygen toxicity) in your central nervous system
  • Lowered blood sugar in people who have diabetes treated with insulin
  • In certain circumstances, fire — due to the oxygen-rich environment of the treatment chamber.
How to Prepare

You’ll be provided with a hospital-approved gown or scrubs to wear in place of regular clothing during the procedure.

For your safety, items such as lighters or battery-powered devices that generate heat are not allowed into the hyperbaric chamber. You may also need to remove hair and skin care products that are petroleum-based, as they are a potential fire hazard. Your health care team will provide instruction on preparing you to undergo hyperbaric oxygen therapy.

During Hyperbaric Oxygen Therapy

Hyperbaric oxygen therapy is typically performed as an outpatient procedure but can also be provided while hospitalized.

In general, there are two types of hyperbaric oxygen chambers:

  • A unit designed for 1 person. In an individual (monoplace) unit, you lie down on a table that slides into a clear plastic chamber.
  • A room designed to accommodate several people. In a multi-person hyperbaric oxygen room — which usually looks like a large hospital room — you may sit or lie down. You may receive oxygen through a mask over your face or a lightweight, clear hood placed over your head.

Whether you’re in an individual or multi-person environment for hyperbaric oxygen therapy, the benefits are the same.

During therapy, the room's air pressure is about two to three times the normal air pressure. The increased air pressure will create a temporary feeling of fullness in your ears — similar to what you might feel in an airplane or at a high elevation. You can relieve that feeling by yawning or swallowing.

For most conditions, hyperbaric oxygen therapy lasts approximately two hours. Members of your health care team will monitor you and the therapy unit throughout your treatment.

After Hyperbaric Oxygen Therapy

Your therapy team assesses you, including looking in your ears and taking your blood pressure and pulse. If you have diabetes, your blood glucose is checked. Once the team decides you are ready, you can get dressed and leave.

You may feel somewhat tired or hungry following your treatment. This doesn’t limit normal activities.

Conclusions

To benefit from hyperbaric oxygen therapy, you’ll likely need more than one session. The number of sessions is dependent upon your medical condition. Some conditions, such as carbon monoxide poisoning, might be treated in three visits. Others, such as non-healing wounds, may require 40 treatments or more.

To effectively treat approved medical conditions, hyperbaric oxygen therapy is usually part of a comprehensive treatment plan provided with other therapies and drugs designed to fit your individual needs.

The Frozen Healer - Cryotherapy

Cryotherapy is a trend with a cult following in the recovery, wellness, and beauty industries. It can be used in combination with light therapy for better results. You may have heard people talking about it or seen celebrities or athletes posting themselves coming out of icy cold chambers on social media, but what is Cryotherapy? Why is everyone talking about it?

In its most basic form, Cryotherapy is simply the use of cold temperatures to heal the body. Using the cold to help our bodies recover from injury, inflammation, soreness, or relaxation has been used since the beginning. Putting ice on a wound or bruise, jumping in a cold lake, or taking an ice bath are basic cryotherapy forms. These methods cause stagnant blood to start moving again, promoting new blood flow, which brings healing. It is a fundamental, well-understood principle that has been widely accepted and used as a means of after the fact recovery but can be quite uncomfortable, inconvenient, and extremely inefficient compared to modern-day cryotherapy through the use of cryotherapy chambers.

Day by day

Modern-day cryotherapy lends from past cold modalities to provide a much more comfortable, convenient, and effective recovery through cryotherapy chambers. Cryotherapy chambers provide a quick, 2–3 minute private session of whole-body exposure to shallow temperatures in a dry, contained, breathable air environment. Add in some music, light therapy, and awesome fog from the cold, and it becomes a fun experience that completely distracts from how cold you just got!

The goal of true whole body cryotherapy is to expose as much skin as possible to temperatures of -166F or below for a short period of time (2–3 minutes) to create a drop in the external skin temperature of 30–40 degrees. The best way to measure this is to use an infrared temperature device before and after the session on the upper arm's back, measuring the two temperature readings' delta.

Effects of Cryotherapy

Blood rushing to the core is our body’s natural way of protecting our core organs from extreme cold. When exposed to freezing temperatures, blood rushes from our extremities to our core, creating a systemic response throughout the body that produces many benefits. Cold promotes increased blood flow, bringing fresh, oxygenated blood full of white blood cells to the body's areas that need it. Cryotherapy amplifies these positive effects and adds many more incredible benefits by activating the vagus nerve and causing vasoconstriction and vasodilation. The vagus nerve is responsible for the regulation of internal organ functions [NCBI]. The vagus nerve is activated by cold on the back of the neck and touches every major organ in the body.

Whole Body Cryotherapy is not just for extreme athletes or those with present injuries, either. The best practice is for healthy, normal adults (minors with doctors) to regularly practice whole body cryotherapy 3–5 times per week. It is important to maintain a constant cryotherapy regimen and not just use it when you feel you need it or are injured. It is a continual recovery modality that helps the body stay healthy and even resist injuries and illness.

Light to Manage Neuropathic Pain

Imagine that the movement of a single hair on your arm causes severe pain. For patients with neuropathic pain — a chronic illness affecting 7 to 8% of the European population, with no effective treatment — this can be a daily reality.

Scientists from EMBL Rome have now identified a special population of nerve cells in the skin that are responsible for sensitivity to gentle touch. These are also the cells that cause severe pain in patients with neuropathic pain. The research team, led by EMBL group leader Paul Heppenstall, developed a light-sensitive chemical that selectively binds to this nerve cell type. By first injecting the affected skin area with the chemical and then illuminating it with near-infrared light, the targeted nerve cells retract from the skin’s surface, leading to pain relief. Nature Communications publishes the results on 24 April 2018.

The Spicy Effect

By clipping off the nerve endings with light, the gentle touch that can cause severe pain in neuropathic patients is no longer felt. “It’s like eating a strong pepper, which burns the nerve endings in your mouth and desensitizes them for some time,” says Heppenstall. “The nice thing about our technique is that we can specifically target the small subgroup of neurons, causing neuropathic pain.”

There are many different nerve cells in your skin, which make you feel specific sensations like vibration, cold, heat, or normal pain. These cells are not affected by the light treatment at all. The skin is only desensitized to the gentlest touch, like a breeze, tickling, or an insect crawling across your skin.

Illumination vs. Drugs

Previous attempts to develop drugs to treat neuropathic pain have mostly focused on targeting single molecules. “We think, however, that there’s not one single molecule responsible. There are many,” Heppenstall explains. “You might be able to succeed in blocking one or a couple, but others would take over the same function eventually. With our new illumination method, we avoid this problem altogether.”

Touch and pain were assessed by measuring reflexes in mice affected by neuropathic pain in their limbs. Affected mice will normally quickly withdraw their paw when it is gently touched. After the light therapy, however, they exhibited normal reflexes upon gentle touch. The therapy's effect lasts for a few weeks, after which the nerve endings grow back, and gentle touch causes pain again.

The team also investigated human skin tissue. The tissue's overall makeup and the specifics of the neurons of interest appear to be similar, indicating that the method might be effective in managing neuropathic pain in humans. “In the end, we aim to solve the problem of pain in both humans and animals,” says Heppenstall. “Of course, a lot of work needs to be done before we can do a similar study in people with neuropathic pain. That’s why we’re now actively looking for partners and are open for new collaborations to develop this method further, with the hope of one day using it in the clinic.”

How Light Ignites an Internal Fire - Lack of Exposure to Light may Increase Metabolic Syndrome Risk

Yes, fat cells deep under your skin can sense light. And when bodies do not get enough exposure to the right kinds of light, fat cells behave differently.

This discovery, published Jan. 21, 2020, in the journal Cell Reports, was uncovered by scientists at Cincinnati Children’s who were studying how mice control their body temperature. What they found has implications far beyond describing how mice stay warm.

The study shows that light exposure regulates how two kinds of fat cells work together to produce the raw materials that all other cells use for energy. The study authors say that disruptions to this fundamental metabolic process appear to reflect an unhealthy aspect of modern life — spending too much time indoors.

Our bodies evolved over the years under the sun’s light, including developing light-sensing genes called opsins. But now we live so much of our days under artificial light, which does not provide the full spectrum of light we all get from the sun.”

Richard Lang, PhD, developmental biologist and senior author of the study.

Lang directs the Visual Systems Group at Cincinnati Children’s and has authored or co-authored more than 120 research papers, including many related to eye development and how light interacts with cells beyond the eye.

“This paper represents a significant change in the way we view the effects of light on our bodies,” Lang says.

Shining New Light on the Role of Light

Many people understand that certain wavelengths of light can be harmful, such as gamma radiation from a nuclear bomb or too much ultraviolet light from the sun burning our skin. This study from Lang and colleagues describes a different, healthy role for light exposure.

Despite the fur of a mouse or a person's clothing, light does get inside our bodies. Photons — the fundamental particles of light — may slow down and scatter around once they pass the outer layers of skin, Lang says. But they really do get in, and when they do, they affect how cells behave.

In this direction, Lang’s work dates back to 2013 when he led a study published in Nature, which demonstrated how light exposure affected fetal mice's eye development. More recently, in 2019, Lang and colleagues published two more papers, one in April in Nature Cell Biology that reported possible benefits of light therapy for eye development in preterm infants, and another study in October in Current Biology that details how light receptors in the skin help mice regulate their internal clocks.

The new study in Cell Reports includes important contributions from Russell Van Gelder, MD, Ph.D., and Ethan Buhr, Ph.D., from the University of Washington, Randy Seeley, Ph.D., University of Michigan.

“This idea of light penetration into deep tissue is very new, even to many of my scientific colleagues,” Lang says. “But we and others have been finding opsins located in a variety of tissue types. This is still just the beginning of this work.”
How Light Ignites an Internal Fire

In the latest findings, the research team studied how mice respond when exposed to chilly temperatures — about 40° F. They already knew that mice, much like humans, use both a shivering response and an internal fat-burning response to heat themselves.

Deeper analysis revealed that the internal heating process is compromised in the absence of the gene OPN3 and exposure, specifically to a 480-nanometer wavelength of blue light. This wavelength is a natural part of sunlight but occurs only at low levels in most artificial light.

When light exposure occurs, OPN3 prompts white fat cells to release fatty acids into the bloodstream. Various types of cells can use these fatty acids as energy to fuel their activities. But brown fat literally burns the fatty acids (in a process called oxidation) to generate heat that warms up the chilly mice.

When mice were bred to lack the OPN3 gene, they failed to warm up other mice when placed in chilly conditions. But surprisingly, even mice with the correct gene failed to warm up when exposed to light that lacked the blue wavelength.

This data prompted the team to conclude that sunlight is required for normal energy metabolism. At least in mice. While the scientists strongly suspect that a similar light-dependent metabolic pathway exists in humans, they need to complete another series of experiments to prove it.

“If the light-OPN3 adipocyte pathway exists in humans, there are potentially broad implications for human health,” the study states. “Our modern lifestyle subjects us to unnatural lighting spectra, exposure to light at night, shift work, and jet lag, all of which result in metabolic disruption. Based on the current findings, insufficient stimulation of the light-OPN3 adipocyte pathway may be part of an explanation for the prevalence of metabolic deregulation in industrialized nations where unnatural lighting has become the norm.”

What’s Next?

It likely will require several years of study to flesh out this discovery. Someday, in theory, “light therapy” could become a method for preventing metabolic syndrome from developing into diabetes. Replacing indoor lights with better, full-spectrum lighting systems also could improve public health, Lang says.

However, more study is needed to pin down the potential therapeutic value of light therapy. Questions to answer include determining how much sunlight is needed to support a healthy metabolism and whether people battling obesity might lack a functional OPN3 gene in their fat cells. Also unknown: when would light therapy matter most: for pregnant mothers? For infants and children? Or for fully developed adults?

Source:

Cincinnati Children’s Hospital Medical Center

Journal reference:

Opsin 3-Dependent Adipocyte Light Sensing enhances Nayak, G., et al. (2020) Adaptive Thermogenesis in Mice. Cell Reports. doi.org/10.1016/j.celrep.2019.12.043.

Popular Edible Beauty Brands

Recherché Skincare

https://www.rechercheskincare.com/edible-skincare

Dr. Bronner’s Pure Castile Soap

https://shop.drbronner.com/

Olive And M

https://oliveandm.com/

Earth Therapeutics Tea Tree Oil Cooling Foot Scrub

https://www.earththerapeutics.com/

Sukin Naturals: Purifying Facial Mask

https://sukinnaturals.com.au/

Juice Beauty

https://juicebeauty.com/products/hydrating-mist

Annmarie Gianni: Anti-Aging Facial Oil

https://shop.annmariegianni.com/products/anti-aging-facial-oil-15ml?clickId=3327424048&utm_campaign=21181&utm_medium=affiliate&utm_source=pepperjam

Kora organics

https://koraorganics.com/collections/natural-beauty

Elique Organics

https://eliqueorganics.com/

Arbonne

https://www.arbonne.com/pws/DeejaDean/tabs/home.aspx

EdenSong Organics Bodalicious Butta

https://www.edensongskincare.com/store/p17/Bodalicious_Butta'.html#axzz3VdCbo3x7

The Milana Co

https://themilanaco.com/pages/skincare

Edible beauty Australia

https://ediblebeautyaustralia.com/collections/all

The Body Deli

https://www.thebodydeli.com/

Youth to the people

https://www.youthtothepeople.com/

TonyMoly

https://tonymoly.us/collections/sets

Yes To

https://yesto.com/

100 percent pure

https://www.100percentpure.com/

Kinohimintsu

https://www.kinohimitsu.com/en/index.php/beauty/bb-drink

Peach and lily

https://www.peachandlily.com/products/egg-white-bubble-cleanser

Loli Beauty

https://lolibeauty.com/

RMS beauty

https://www.rmsbeauty.com/

Bite beauty

https://www.bitebeauty.com/

The coco kind

https://www.cocokind.com/products/organic-ultra-chlorophyll-mask

The beauty Chef

https://thebeautychef.com

Welle co

https://www.welleco.com.au/

Cilk Rose

https://www.cilkrosewater.com/

The nue co

https://www.thenueco.com/

Orchard Street

https://orchardstreet.com.au/

Honest Beauty

https://www.honest.com/beauty-products

Sephora

https://www.sephora.com/brand/edible-beauty

Sakara

https://www.sakara.com/products/beauty-chocolates

The real coconut

https://therealcoconut.com/

Half a Trillion-Dollar Market  —  Men.

There’s an emerging disruptor in the beauty industry as companies target a different consumer type to expand the half a trillion-dollar market — men.

Across the globe, men’s adoption of beauty use is already starting to take off. But the trend comes in many different shapes and forms. For beauty companies struggling to find new avenues of growth, it’s a huge opportunity to see whether men are looking for traditional grooming products, discreet moisturizers, beauty balms, or popular light therapy.

According to Allied Market Research, the men’s personal care industry is predicted to hit $166 billion by 2022. According to market researcher NPD Group, just last year, men’s skin-care products alone saw a more than 7% jump in sales and with the category currently valued at $122 million.

“In recent years, the notion that men can’t or shouldn’t be using skin-care products or caring more in general about all aspects of their appearance has been receding,”

Said Andrew Stablein, a research analyst at Euromonitor International, in a research note.

The success of digitally native brands catered directly to men such as Harry’s and popular subscription service Dollar Shave Club reveal

“the average men’s grooming routine isn’t about just shaving, but can be aided by using skin-care products,”

Stablein said.

Even high-end designers like Chanel have jumped on the trend, launching its first made-for-men skincare and cosmetics line known as “Boy De Chanel” last September.

“It seems that mass players are trying to expand their market and gain share in a slowing market by growing their user base,”

Said Alison Gaither, beauty and personal care analyst at Mintel.

This includes tutorials from U.K. makeup artist Charlotte Tilbury and Rihanna’s Fenty brand, which have both put out instructions for guys who want to use makeup subtly for a more groomed appearance.

According to Coresight Research, the Asia Pacific market is now one of the fastest-growing regions for men’s grooming and cosmetic product use. Jason Chen, general manager for Chinese online retail site Tmall, told Coresight that “supply cannot meet the demand for male make-up products across China.”

However, recent data suggests the new generation of beauty consumers prefer a non-binary approach altogether. According to NPD’s iGen Beauty Consumer report, nearly 40% of adults aged 18–22 have shown interest in gender-neutral beauty products and holistic products.

“There are so many … [people] growing up with the idea that you’re not tied to the gender you’re born with,”

Said Larissa Jensen, a beauty industry analyst at NPD.

“Beauty is no longer what you’re putting out as ‘ideal beauty.’ Beauty can be anything, anyone, and any gender.”

In 2016, shortly after Coty acquired CoverGirl, the brand made history with its first-ever “CoverBoy” featuring popular YouTube makeup artist James Charles.

Charles recently found himself in a very public spat with Tati Westbrook, another YouTube beauty vlogger. Coverage of the feud, which began after Charles backed a vitamin brand that was a rival to Westbrook’s own, has been widespread and shows the influence these internet personalities have and how the business has evolved over the past two years.

While Charles may be having his struggles now, as he has lost millions of subscribers, the attention he originally received from CoverGirl sparked similar collaborations by major brands including L’Oreal, who featured beauty blogger Manny Gutierrez, known under the moniker Manny MUA, as the face of its Maybelline Colossal mascara campaign in 2017.

“I think a lot of people misconstrue a man wearing makeup as someone that is transgender or someone that wants to be a drag queen, but it’s not that,”

Guitterez, founder and CEO of Lunar beauty told CNBC.

“I think right now people are still intimidated by the aspect of it.”

Gutierrez’s makeup tutorials and product reviews have attracted nearly 5 million subscribers to his YouTube page. According to a note by the NPD Group, one setting powder product saw a 40% surge in sales after Gutierrez promoted it on his YouTube channel.

“It’s all about inclusivity and encouraging people to be a little more inclusive with both men and women,”

Said Gutierrez.

“I think that as time progresses and you see more men in beauty, it’ll get a little bit better and better.”



Red Light Therapy for Enhanced Cellular Function

The one thing we have in common with animals, plants, and other living organisms is that we are all made of tiny little cells. The intricate human body in itself houses trillions of cells. Without cells, there wouldn’t be any life on Earth at all.

In this article, we discuss cellular anatomy and cellular function. Here, we understand how light plays a role in the support and acceleration of cellular respiration.

What is a cell?

Think of cells as the basic building block of all living organisms. As the smallest unit of life, cells contain many parts, each with a different and specific function. The command center of the cell is called the nucleus that contains the human DNA.

As these cells combine to form into an organism, they become responsible for vital activities like nutrient intake, energy production, structure building, and hereditary material processing. They make sure that your body gets enough energy and nutrients to function 24/7.

What is ATP?

One essential activity that our cells do for us is by taking in oxygen and nutrients to fuel body energy. This energy unit that is converted by the cells is called Adenosine Triphosphate (ATP) Energy.

The ATP itself is a molecule packed with high energy that empowers cellular function. ATP is required by the body to do every activity. Other cells that do more strenuous activities like muscle cells would need more ATP than others. The ideal optimal cellular function would allow cells to produce and use enough energy to achieve body balance or homeostasis.

How is ATP produced?

The mitochondria are the powerhouses of the cell. They are responsible for the production of ATP. Aside from cellular energy, this double-membrane powerhouse does protein synthesis, cell signaling, and cell apoptosis. ATP is produced with oxygen (aerobic) or without oxygen (anaerobic), the former being more beneficial because it converts more energy. Thus, 95% of cellular energy goes through an aerobic process.

Our cells go through a process called Aerobic cellular respiration to convert oxygen, food, and water into the body’s energy currency, which is ATP. This process is a well-organized metabolic pathway that consists of four stages. Our bodies take in nutrients from the food we eat for the first two stages to convert them into carbon compounds. Then for the next steps, these carbon compounds are transformed into the energy that our cells use.

How does light therapy support cellular function?

Light can sometimes be less attributed to improve our body’s physiology. However, light has benefits that go beyond aesthetic and technological purposes. Just like how light plays a role in plants' photosynthesis, it also benefits human cellular function.

Red light therapy from Kaiyan Medical composes of Red and Near-Infrared Wavelengths that aid in the Mitochondria's function to produce more ATP energy. It works by increasing the number of Mitochondria in our cells and by boosting their function.

The electron transport chain heavily governs the cellular respiration process. Red Light therapy has photons that can boost the mitochondria to function better through the Cytochrome C Oxidase. It plays an essential role in the cellular respiration process by improving the cell's electron transfer process. In this way, more ATP can be produced by the body for an enhanced cellular function.

As mentioned earlier, oxygen plays an essential role in the cellular respiration process. The infamous Nitric Oxide can take the rightful place of oxygen to limit ATP production that causes stress and cellular death. Red light therapy also gets rid of a harmful roadblock to ATP in the dissociation of Nitric Oxide and the Cox. The photons from Red light therapy prohibits the production of nitric oxide.

The effect that Red Light therapy does on our body is that by improving cellular function, our body can achieve these benefits:

  • Improved blood Flow
  • Increased Energy Build up
  • Enhanced Healing Response
  • Reduced Inflammation
  • Reduced Stress
  • Balanced Cellular Function

As you do daily activities such as eating, drinking, walking, or working out, think of the massive role that your cellular system plays to make these activities possible. In this way, you can put conscious efforts into improving your cellular system through a healthy diet and lifestyle and by integrating Red Light Therapy.

References:

https://www.healthline.com/health/red-light-therapy#how-does-it-work?

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5215870/

https://www.medicalnewstoday.com/articles/325884

https://www.britannica.com/science/cell-biology

https://www.britannica.com/science/mitochondrion

https://www.nationalgeographic.org/media/cellular-respiration-infographic/

Animal Wellness: Red Light Therapy for Dogs

Certified pup parents know pets could easily sense when we’re feeling sad, happy, scared, or sick. Our furry friends could probably read us better than we could read them. However, active pets are also prone to injuries, cuts, wounds, inflammation, and infections like human beings.

If you’re a pet owner, you’d always want to give your pets the best care possible to make sure they are healthy and happy at all times. Thankfully, medicine has innovated well enough to find more advanced treatments and maintenance tools for our canine friends. In recent years, pet owners and some veterinarians have been using safe, non-invasive, and high-tech treatments for pets and domestic animals such as Red-Light therapy.

What is Red Light Therapy?

Red light therapy has been utilized by the veterinary world to deliver similar benefits to pets, just like humans. Red light therapy is a non-invasive treatment and a form of photobiomodulation that alters animal cells' physiology.

Light therapy produces wavelengths of photons that the photoreceptors in the animal’s bodies can absorb. The light provides alteration to the animal cells that result in numerous benefits such as better blood circulation and natural cellular regeneration.

Multiple studies support the efficacy of red-light therapy to animals. A 2017 study shows how Red Light therapy promoted faster healing for dogs that underwent bone surgery. The findings were also complemented by another study that suggests near-infrared wavelengths promoted bone cell reproduction for dogs.

Red Light Treatment for Dogs?

When our pets sprain their ankles or cut their pads, their cells become damaged. As a result, their bodies need cell energy in the form of adenosine triphosphate (ATP) to repair damaged cells and tissues.

The photoreceptors in their body absorb red light. The light stimulates ATP production in the animal’s body that results in faster delivery of nutrients and better excretion of toxins. All of these processes are essential for the body’s healing.

Red Light also promotes better circulation as it stimulates Nitric Oxide production to help blood vessels remain flexible. Injured or damaged cells need proper blood flow for healing. Light therapy helps in the healing process by increasing blood flow to ensure enough nutrients and oxygen in the affected area.

Red light is beneficial for surface healing by helping tissues that are potent in hemoglobin. On the other hand, near-infrared light can work better on deeper wounds as it can pass through the animal’s body's deeper tissues.

Innovators like Kaiyan Medical uses the FDA-cleared Red Light Therapy pad that utilizes the combined technology of Red Light-emitting diodes that can penetrate the skin and infrared wavelengths that can heal muscles, ligaments, and tendons. Red light and near-infrared wavelengths are the ideal combination of surface and inner healing.

Aside from providing the cells with energy, the light also stimulates collagen production, which aids in repairing damaged tissues. Collagen is an essential protein that can help get rid of scars and wounds.

What are the conditions that can be addressed by Red Light Therapy?

Skin and Surface issues

  • Surface wounds
  • Hair loss
  • Eczema
  • Other Skin Conditions
  • Wounds and Cuts

Deeper surface issues

  • Arthritis
  • Soft tissue injuries
  • Ligament injuries
  • Post-surgery Inflammation
  • Pain, Inflammation, and Swelling
  • hip dysplasia
  • Tendon problems
  • Strains and sprains
  • Salivary gland problems

General Maintenance

  • Maintenance of healthy joints and Bones
  • Maintenance of healthy Cardiovascular system
  • Maintenance of healthy Digestive system
  • Healthy Vision
  • Prevention of anxiety

Light therapy can be your best therapeutic tool in boosting your pet’s overall wellbeing. As a general rule, light therapy is a safe and non-invasive option for treating minor issues and maintaining their overall health. However, if your pet is undergoing more severe health problems, it’s best to consult your veterinarian for a more conducive treatment plan. While red light therapy is not a panacea for all your dog’s health issues, it’s a low-risk and pain-free option to complement treatments and to promote overall wellness for your beloved pet.

References:

https://www.jstage.jst.go.jp/article/islsm/13/1/13_1_73/_article/-char/ja/

https://onlinelibrary.wiley.com/doi/full/10.1111/vde.12170?deniedAccessCustomisedMessage=&userIsAuthenticated=false

https://www.thieme-connect.com/products/ejournals/abstract/10.3415/VCOT-15-12-0198

https://www.degruyter.com/view/journals/plm/1/2/article-p117.xml

https://onlinelibrary.wiley.com/doi/abs/10.1053/jvet.1999.0292?deniedAccessCustomisedMessage=&userIsAuthenticated=false

How Does Red Light Therapy Relate with Ketogenic Diet?

Red light therapy is an easily accessible and affordable clinical device that boosts metabolism and increases ATP energy production. It is a non-invasive modulator of metabolism that delivers proper frequency, power, and luminance by shifting the mitochondria's function organically.

Ketogenic Diet and Red Light Therapy

A ketogenic diet involves the consumption of low-carb, high-fat meals. When practiced together with red light therapy, it can amplify your metabolic flexibility. It also helps cells burn more sugar and fat efficiently. Good levels of ATP energy production (empowered by mitochondria by converting oxygen and nutrients to ATP) can help prevent high-blood or low-blood pressure conditions. The process of creating ATP energy works best when our body and cells are well-balanced, reaching a state called homeostasis.

One thing to consider in following a diet plan is over-nutrition, which may lead to metabolic inflexibility. When over-feeding happens, the production of ATP energy may result in metabolic congestion. Red light therapy can help alleviate this metabolic congestion by focusing amplification of ATP energy levels. Insulin can mediate metabolic congestion by the fluidity between glucose, fatty acids, and amino acids. An important step for ATP energy production is forming the COX enzyme, which can aid metabolism by pairing oxygen neutralized into the water with high-energy electrons.

If the COX enzyme goes out of sync with electrons' flow, the high-energy electrons won’t effectively be neutralized into water. Red light can help regulate the healthy formation of the COX enzyme, efficiently oxidizing fat. The ketogenic diet triggers cells to insulin by stimulating ATP energy production by increasing metabolic flexibility, reducing carbon combustion, and helping clear metabolic congestion.

Significance to Healing

The chemical DHEA (dehydroepiandrosterone) plays numerous vital roles in health. It helps with the metabolism of cholesterol that produces hormones such as progesterone, estrogen, and testosterone. As we age, our levels of DHEA decreases, as well as the synthesis of such hormones. Low levels of progesterone can affect women in their peri-menopausal and post-menopausal stages. This is a function of the decline in mitochondria, which then affects ATP energy levels.

Low levels of DHEA may contribute to the insufficiency of adrenaline and estrogen dominance, which is common to middle-aged women at the peri-menopausal or post-menopausal stage. Women rely on the production of adrenaline and DHEA to keep their progesterone levels and prevent estrogen dominance.

Lower production of DHEA and progesterone can be an effect of elevated secretion of cortisol that is caused by acute/chronic stress. When high levels of stress reduce the adrenal glands' proper functions due to the decrease of synthesis of the adrenal cortex steroid hormones in the mitochondria, it results in adrenal insufficiency.

Based on health professionals' studies, when cortisol levels drop, it inhibits the synthesis and secretion of DHEA/progesterone, resulting in pathophysiological changes caused by stress. Enzyme activation and regulatory signaling can affect the fluidity dynamics between cortisol, DHEA, and other hormones such as progesterone, estrogen, and testosterone.

Red light therapy and ketogenic diet can mediate inflammatory stress and regulate the healthy production of DHEA.

Estrogen Levels

Estrogen is a master regulator of female metabolism. A youthful and regulatory expression of estrogen is the production of 17B-estradiol (E2). It modulates the menstrual cycle to ensure the healthy release of the corpus luteum, which secretes progesterone.

On the other hand, progesterone helps maintain a healthy uterus lining. When the expression of E2 is sufficient, progesterone secretion also increases. Having high progesterone levels means having lower estrogen and a lesser risk of getting diseases like breast, ovary, and colon cancer. E2 also contributes to potential partition fuel, orchestrating metabolic flexibility, and increasing energy levels that lead to optimal cerebral glucose metabolism.

The decline in the peripheral steroidogenesis of E2, progesterone, and testosterone is common as time goes by.

Testosterone Levels

A 12-week ketogenic diet may increase testosterone levels in men due to an increase in cholesterol and DHEA. Red light therapy also improves the mitochondrial synthesis of testosterone from DHEA.

For males, testosterone naturally converts to E2, but healthy testosterone levels stipulate a hormonal challenge to the synthesis of E2. An enlarged prostate can be caused by estrogen dominance when there is no testosterone/estrogen ratio balance. Having healthy testosterone levels may lead to a decline of estrogen dominance, as it is for progesterone in women.

Other Healing Benefits

Healthcare professionals strongly believe that red light therapy can be a powerful healing agent that may help prevent diabetic ulcers and lower chances of extremity amputations when practiced together with a ketogenic diet.

Diabetic ulcers usually result to lower limb amputations in the long-run. Studies show that diabetic foot ulcers and lower extremity amputations are increasing in number. In fact, having unhealed wounds can be alarming as the post-amputation survival rate for people with diabetes averages to only five years. Statistics show the urgent need to prevent, detect, and prove that treatments for lower limb ulcers should be highly considered. Red light therapy has been proven to increase the circulation of blood flow and healthier skin.

Innovation

Red light therapy and ketogenic diets are considered to be disruptive innovators in the healthcare system. Apart from the fact that red light therapy is non-invasive, such treatment shows great potential in helping lengthen the lifespan and improve people's overall health. Red light therapy also promotes a more affordable and accessible treatment that can be done in the comfort of your home.

Here at Kaiyan Medical, we offer red light therapy devices to help you achieve your health and aesthetic goals. To learn more about the brands and products we offer, please click here.

More References

https://perfectketo.com/red-light-therapy/

https://perfectketo.com/keto-diet-plan-for-beginners/

https://www.rejuvcryo.com/the-science/2019/8/14/article-the-surprising-synergy-between-keto-and-red-light-therapy-rejuvcryo-north-county-san-diego

The Benefits of Red Light Therapy in Treating Hypothyroidism

Thyroid issues are a commonplace problem that affects all ages and genders. It significantly contributes to changes in mental outlook, energy levels, skin, and weight. Hypothyroidism has drawn much attention due to many cases that are left undiagnosed, untreated, or inadequately treated. As a result, it led to more serious problems such as infertility, heart disease, neurological problems, and high cholesterol and blood pressure levels. Not to mention, treatment studies for hypothyroidism have experienced a significant backlog throughout the years.

In this article, we take a look at the basic precepts of hypothyroidism and how Red light therapy plays a role in treating the thyroid problem.

What is Hypothyroidism?

Hypothyroidism is a chronic abnormality of the thyroid gland, demonstrating an inadequacy of thyroid hormones such as triiodothyronine and thyroxine (T4). Normal levels of thyroid hormones stimulate a healthy amount of mitochondrial energy production. This means that in hypothyroid cases, the thyroid inhibits a state of low cellular energy.

As a result, people who suffer from this chronic problem often feel unusual fatigue, tiredness, weight changes, and skin problems. However, symptoms can vary from person to person and may even be subtle enough to be left undiagnosed and untreated. When left untreated, the disease causes more irreversible neurological, reproductive, and cardiovascular problems. It’s also found that Hypothyroidism is found to be five to eight times more prevalent in women than in men.

What Causes Hypothyroidism?

Hypothyroidism can be caused by a wide range of diet and lifestyle issues. Some cases can be caused by a lack of iodine intake, especially in more underdeveloped parts of the world. It can also be caused by other dietary issues such as low carb intake, excess polyunsaturated fat intake, and alcoholism. Other typical causes include stress, aging, sleep deprivation, and heredity.

What is Light Therapy?

When talking about light, we often think of it as the first thing we switch on in a dark room or the bright rays that set up the mood. We don’t usually think of it as having bioactive properties, penetrating beneath our skin, affecting the way our hormones, tissues, and cells function.

In reality, our cells actually capture photons of light, just like how plants do. Light therapy, also called photobiomodulation, essentially means light (photo) changing (modulation) your biology (bio).

How Can Red Light Therapy Help Treat Hypothyroidism?

Red and near-infrared light therapy, backed by over 5,000 studies, has grown its significance in medicinal treatments throughout the years.

Red light therapy is significantly targeted for hypothyroidism because unlike other kinds of light; they have a greater penetrability beneath our skin.

In fact, a 2010 study found that 38% of patients with Hashimoto’s hypothyroidism who were given red light therapy treatments have reduced their medication dose, while 17% have been able to stop the medication completely.

Here’s how it works:

  1. It Supplies energy

Because hypothyroidism is reflective of low cellular energy in the thyroid, red and near-infrared light helps the cells work better by supplying more energy to your body.

They have a photoreceptor called cytochrome c oxidase that works by catching photos of light. Like how our food is being processed by our body for the mitochondria to stimulate energy, the photos of light also stimulate energy production in the mitochondria. The mitochondria are responsible for the energy production of our body’s cells.

  1. It Prevents Stress

Red light is also shown to prevent stress by averting nitrous oxide poisoning. This means that aside from helping the mitochondria supply more energy, red light helps the thyroid hormone by alleviating stress-related molecules' effects.

  1. It Breaks the Cycle

Hypothyroidism is a vicious cycle of having low energy availability and decreased thyroid hormone production. By stimulating energy production in the mitochondria and preventing nitrous oxide poisoning prevention, red light can potentially break the cycle responsible for hypothyroidism.

In Kaiyan Medical, we produce a medical-grade red light therapy device that is effective and non-invasive, ideal for supplementing hypothyroidism treatments. Our device has a dual optical energy technology that combines red light and infrared light therapy as an excellent spectrum for deeper penetration and absorption. You can now rise above hypothyroidism and maximize your body’s healing properties with our Red Light therapy device.

More References

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6247385/

https://drruscio.com/red-light-therapy-part-ii/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822815/

https://www.health.harvard.edu/newsletter_article/treating-hypothyroidism


Speeding up Recovery for Athletes: Red Light Therapy Treatment

Athletes take exercise and training very seriously to maximize and improve performance. Whether you’re a competitive elite athlete or someone who’s just born to win every day, recovery can be one of the most neglected aspects of our daily lives.

Recovery: We hear it all the time from coaches and instructors, but it’s also one of the hardest things to do. The saying “Push yourself to your limits” happens also to have its own limits. Neglecting your training recovery aspect for optimal performance can take a toll on our body in the long run.

In this article, we show the importance of rest and recovery and some of the ways to speed up our body’s healing process, such as integrating red light therapy treatment.

What is Recovery?

After training or a strenuous workout, our body responds to strain, injury, or stress as a defense mechanism in inflammation. While it may sound damaging, inflammation is a natural response when our muscle tissue regenerates and grows from microtears. Going through the process is important to allow muscle growth and performance improvement. However, the inflammation needs recovery for your muscles to heal from too much strain or injury for it to maximize its healing effects.

Recovery is the process that your body undergoes to recuperate between training sessions or from the time of danger to its healing progression. Recovery works by giving your body time to regenerate muscle tissues.

Whether it’s a strain, acute soreness, or severe damage, your body needs time to heal. The time needed for the recovery process is also dependent on the severity of the damage/strain/injury. This means that the greater the stressor's intensity to your body, the longer the time you need to spend to allow your body to recover.

What are the Examples of Recovery?
  • Getting enough sleep
  • Resting
  • Cooling down
Why is Recovery Time Important?

Many athletes have made recovery time a priority as it assists in the healing process of muscles post-inflammation. Giving your body time to recover can result in an improved performance.

During the recovery time, the muscle repairs regenerate and strengthens to tolerate a higher level of strain the next time. In other words, taking time to heal makes you stronger and less susceptible to future injuries. Having enough recovery time helps in optimal performance and longevity by helping the athletes convalesce both psychologically and physically to train and perform better.

By doing this, you can prevent future chronic problems, decreased sports performance, increased risk of injuries, or fatigue caused by inadequate healing.

What are the Ways to Speed Recovery?

1. Plan Your Rest Time

Planning your rest schedule and duration involves many factors such as the intensity of your activity, your age, and your skill level in sports/pieces of training. You may need less time to recover or more, depending on your personal needs. As a general rule, for medium to intense workouts/training, it is prescribed to maintain a healthy duration of 45 hours in between training.

Pro tip: Engage in Active Recovery

If you’re not suffering from an injury or severe damage, it’s important to incorporate active recovery periods during your recovery time so your body can maintain its active state.

Proper blood circulation is important in the recovery process. When the body gets injured, the body responds by dilating blood cells to speed up blood flow. Active recovery helps maintain good blood circulation and removes lactic acid out of inflamed muscles. Active recovery activities involve light physical movements such as stretching or yoga to allow proper blood flow and help your muscles recover and adapt better.

2. Get Enough Sleep

The Human Growth Hormone (HGH) is at its peak at night as we sleep. This hormone is responsible for tissue repair and recovery. This is why the key to a speedy recovery is to make you get a good REM sleep at the right time during your recovery period. Make sure to get a minimum of 7 hours of sleep at night to ensure that your body gets enough rest that it needs and to avoid any future complications. Lack of sleep can deter the process of muscle recovery.

Pro tip: Don’t be scared of having a few extra hours

Especially when you are suffering from intense strain/injury, it’s important to sneak in a few extra hours of sleep within your recovery period. In fact, a 2018 study suggests that sleep extension, a form of sleep intervention, can significantly contribute to the success of an athlete’s recovery. One way to ensure you get a significant amount of rest is to make sure your body has a healthy circadian rhythm. If you’re worried that you’re having trouble sleeping at night, there are many ways to improve your circadian clock- including red light therapy.

3. Refuel your Body

A healthy diet is also one of the great pillars of health. The nutrients you take in play a great role in your body’s function to cooperate with the recovery process. Minimize processed foods that may contain too much salt, sweets, and alcohol. These types of food may promote inflammation and dehydration, which can hinder the recovery process. Make sure to eat a balance recommended diet of whole foods.

Have an evaluation with a licensed dietitian or nutritionist to assess your nutritional needs. Assessment may vary depending on different factors such as weight, BMI, and activity level.

Pro tip: Focus on your Protein Intake

Protein is the key macronutrient that is responsible for muscle building and repair. It has amino acids that are metabolized by your body to ease muscle inflammation and build stronger muscles. Skip gulping on those protein supplements and focus instead on taking protein from whole foods such as lean meat, eggs, and cheese.

4. Listen to your Body

There can be all kinds of rules in recovery to maximize healing, but you can’t go wrong with paying attention to your body’s signals. Often, your body’s responses can be neglected. However, overlooking these signals can result in overtraining, which puts your body at risk of having more problems in the long run.

Despite your recovery time or period, if your body signals indicate pain and soreness, it’s important to give it time to recover better to address the issue. Aside from obvious physiological signs, pay attention to your heart rate variability, indicating your body’s adaptability to stress and your overall cardiovascular fitness.

5. Incorporate Red Light Therapy

Thanks to innovative medical devices, athletes and trainers have utilized more advanced healing modalities like red light therapy. Red Light Therapy is a popular, non-invasive, and effective light therapy treatment that can improve blood circulation essential for tissue and muscle recovery. It works by using LED to deliver wavelengths that deeply penetrates the skin and cells.

Integrating red light therapy in your recovery process can speed up muscle repair and minimize pain and swelling. The therapy accelerates the healing process by enhancing macrophage activity responsible for the white blood cell’s healing and anti-inflammatory response.

Pro tip: Try using Light Therapy Body Pad

Kaiyan Medical’s Light Therapy Body pad utilizes a high-end, medical-grade dual optical energy pad that uses 30 pieces of red light and 30 pieces of infrared light. The therapy's duality promotes deep treatment by treating injured skin surface while repairing deeper muscle, bones, tissue, and joint damage. The therapy pad is specially made with a broader light spectrum to increase absorption and penetration so you can maximize the treatment’s benefits. It’s a safe, non-invasive treatment that you can add to your recovery process so you can get back in the game stronger than ever.

Recovery and Rest are just as important as optimizing and improving performance. Allowing your body to maximize its natural healing processes can improve performance and overall better physical and mental health.

More References

Ratamess NA, Alvar BA, Kibler WB, Kraemer WJ, Triplett NT. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 2009.

Garber CE, Blissmer B, Deschenes MR et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 2011.

Michael Kellmann, Maurizio Bertollo, et al. Recovery and Performance in Sport: Consensus Statement. Int J Sports Physiol Perform. 2018 Feb 1.

So-Ichiro Fukada, Takayuki Akimoto, Athanasia Sotiropoulos. Role of damage and management in muscle hypertrophy: Different muscle stem cells' behaviors in regeneration and hypertrophy. Biochim Biophys Acta Mol Cell Res. 2020 Sep.

Daniel J Plews, Paul B Laursen, et al. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med. 2013 Sep.

Michael R. Irwin, Richard Olmstead, Judith E. Carroll. Sleep Disturbance, Sleep Duration, and Inflammation: A Systematic Review and Meta-Analysis of Cohort Studies and Experimental Sleep Deprivation. Biol Psychiatry. 2016 Jul 1; 80(1): 40–52.

https://www.medicalnewstoday.com/articles/247927

https://www.health.harvard.edu/blog/heart-rate-variability-new-way-track-well-2017112212789

https://www.webmd.com/men/features/benefits-protein#1

How Saunas and Red Light Therapy are Distinct but Complementing

Saunas and red light therapy devices are clinically-proven treatments that complement each other wonderfully, even if they depend on distinct biological mechanisms to yield various natural health and aesthetic benefits.

In this article, we’ll focus on how things work for red light therapy and the distinctions of traditional saunas, and what you can actually gain by availing of either of them.

What You Need to Know About Saunas

Saunas can make your body’s core temperature hotter by supplying sufficient heat throughout your body. It has been a part of traditional medicine for various centuries, as the old century folks realized the health benefits of sweating. Although there are multiple types of saunas, two of them are the most popular:

  1. Traditional Convection Saunas

When you think of saunas, this is the first scenario that comes to mind: hot and steamy. This type of sauna requires more energy as it delivers heat to the atmosphere, warming the air inside the sauna, and distributes heat in the body. Traditional convection saunas can maintain air temperatures between 170–200°F and are an ideal type of sauna for general use. It is important to comprehend the different temperatures required for specific health concerns since being exposed to heat more than what has required triggers a warning for unsubstantiated claims.

  1. Infrared Saunas

The latest trend in saunas is the infrared saunas. Inside, instead of warming the air, this kind of sauna heats actual objects. Such objects include those with emitting surfaces, charcoal, and carbon fiber. Infrared saunas' effectivity is directly attributed to the temperature, humidity, and length of time your body is exposed to heat, even though many saunas claim to provide “full-spectrum” infrared wavelengths.

The farther the wavelengths are in the infrared spectrum, the more they are considered efficient and effective in heat production. This will be thoroughly discussed later, but the general gist is that heat supplementation is the primary purpose of saunas, convection, and infrared.

On the other hand, near-infrared wavelengths in near-infrared saunas generate very little heat. Most of the high-quality standard saunas use more effective heats from the far-infrared spectrum or IR-C wavelengths.

What are the Health Benefits of Saunas?

Inducing thermal stress on the body is the primary function of every sauna, but what does it really mean?

One of many biological responses from sauna usage is increased heart rate as well as perspiration. The essential body processes protein metabolism and is also affected by enough heat. Heat shock proteins are a special kind of protein that responds specifically to cellular stress from heat. Heat stress induction leads to natural health benefits like those we gain doing physical activities.

One experiment had participants sat in a sauna treatment for 30 minutes at 194°F for 3 weeks, totaling 13 work sessions. The results showed that the participants improved 32% in performance tests versus those who underwent sauna treatments.

Besides improving your cardiovascular functions, using saunas can help reap benefits such as detoxication, decreased depression, and lesser chronic fatigue.

Red Light Therapy vs. Saunas

What differentiates saunas from red light therapy devices is their mechanism of action. While saunas utilize heat for biological effects, red light therapy devices supply healthy light wavelengths directly to the skin and cells. Even when producing almost no heat, red light therapy devices help with cellular function improvement and support bodily balance. Simply put, red light therapy helps energize the body with light, while saunas heat your body.

How does red light therapy work?

Mitochondria, the powerhouse of our cells, is wonderfully affected by certain wavelengths of natural light. This helps in producing energy within the cells of our body, feeding photons to our cells from natural light via red light therapy.

What about clinically-proven wavelengths?

We feel warm when exposed to sunlight and other heat sources such as fire and hot coals because most of the wavelengths, including ultraviolet (UV), are rapidly absorbed by the outer layers of the skin tissue as heat.

However, unknown to many, some wavelengths have the unique capability of boosting your cellular functions and energy. These are those few wavelengths that can penetrate human tissues more effectively, having photons power-up your “cellular batteries.”

What to Look for When Buying Red Light Therapy Devices and Saunas?

One of the first few things you need to look for in saunas is the temperature it produces. You need to consider some other factors, including the type of wood, the heating unit (Is it conventional or infrared? Is it near far or full-spectrum?), finishes and stains, price, and more.

On the other hand, some of the factors you need to consider when choosing a red light therapy device are the device’s light energy output, light color or frequency range in terms of nanometers, warranty, body or treatment coverage area, the price, and the credibility of the company provider.

Light Therapy and Saunas: Friends with Benefits

Saunas and red light therapy devices offer a wide range of natural health benefits, which surprisingly go well with each other. They both support balance and health to improve your fitness and function but do not overlap with each other’s effects because of energy supplementation in distinct forms and wavelengths. What a great combination of complementary natural therapies!

Here at Kaiyan Medical, we provide different types of red light therapy devices for various medical, wellness, and aesthetic uses. To see our list of products, click here.

References:

https://www.health.harvard.edu/staying-healthy/saunas-and-your-health

https://www.healthline.com/health/fitness-exercise/are-saunas-good-for-you

Scoon GS, Hopkins WG, Mayhew S, Cotter JD. Effect of post-exercise sauna bathing on the endurance performance of competitive male runners. Journal of Science and Medicine in Sport. 2007 Aug.

Crinnion WJ. Sauna as a valuable clinical tool for cardiovascular, autoimmune, toxicant- induced and other chronic health problems. Altern Med Rev. 2011 Sep.



Let’s Talk About Optimal Performance Recovery and Red Light Therapy

Performance and recovery go hand in hand when training or doing physical activities, regardless if you’re an athlete or not. In fact, athletes and their trainers utilize light therapy to improve their performance and muscle health and optimize recovery. To expound further, this article will tackle optimizing performance in fitness, improving the recovery process, and breaking down the significance of light therapy.

Optimizing Performance and Improving Recovery

Optimizing performance means paying attention to the body and how it functions, to live and train the body, and to find the best way to support its functions. Performance is not based on how hard or heavy are the weights you lift or the number of kilometers you’ve run; it is how effective your performance is and how you match it with your lifestyle (with the way you eat, drink and sleep).

On the other hand, recovery is about the effectiveness of the body’s healing process and the conscious effort of being in your best shape by enhancing your workout. It is also about utilizing the body’s tools and functions to effectively finish the jobs required daily.

Physical Performance and Recovery

Performance and recovery are correlated to one another. In exercising or training, if you want to improve fitness, workouts should be consistent. To get stronger, faster, and bigger, certain efforts must be made to increase performance levels. The recovery process is essential in health. It contributes to the workout; it is the downtime between training sessions or a break due to an injury or a period of healing from any exhaustion experienced.

Breaks like cool-downs, rest, and ample time of sleep give your body time to recuperate. They also allow healing for the muscles and tissues affected, strained, or damaged from workouts or training.

Performance is better when recovery time from soreness or inflammation is maximized. It also helps prevent burnout, fatigue, and possible injuries. If recovery is not made right, your physical performance may not reach its optimal state. Some athletes and trainers even make a recovery a priority over training itself. They believe that when an athlete recovers better than their competition, they will train harder in the long run.

Recovery is for Everyone

Even if you are not an athlete, you should know how to let your body rest, heal, and recover properly from any form of injury or physical activity. Everyone has their own activity levels to maintain. It may not be sports-related, but everyone demands effort from their bodies on a day-to-day basis.

When Recovery is Not Prioritized…

Regardless if you are an athlete, your body has limits. And if you push too hard, the body can break down and perform worse, especially if you didn’t observe any recovery time. Overtraining and pushing the body beyond its limits can affect performance in the short term or long term. Chances of injury are higher when you don’t allow yourself to recover, and it may also affect hormonal levels and the function of the immune system. The body needs time to process inflammation or any injury.

Inflammation and the Importance of Recovery

Inflammation happens when the body responses to danger or strain. It often takes place during a strenuous workout. When exercising, inflammation may indicate muscular damage. And when a muscle is “damaged,” it means that the tissue is growing and undergoes repair to get stronger.

Experiencing inflammation is a normal part of the growth and repair of muscle tissues. However, if you won’t set aside time for recovery, your inflammation may worsen over time and lead to greater health consequences.

4 Easy Ways to Improve the Recovery Process

Here are some ways that can help you improve your body’s recovery process:

  1. Body awareness

The body speaks when it sends signals to the brain. Sometimes, we dismiss these signals because of training goals. This may eventually lead to fatigue and injury. When you experience pain or when your muscles are sore, it is important to give your body time to recuperate. You must also be aware of your heart rate, especially at rest, as it may be saying something about the state of your health.

  1. Getting enough sleep

Besides giving your body time to recuperate, deep sleep also allows the body to digest and process fat and recover from inflammation or damaged muscle tissues. It is harder for the body to recover from pain, strain, fatigue, and injury when you’re sleeping less than 7–8 hours per night. If you’re struggling with getting enough sleep, try doing meditation or speak with a doctor so he/she can advise you about developing a sleeping routine.

  1. Eating a balanced diet.

Getting the right amount of whole foods, good carbohydrates, protein, and good fat can also boost your performance and recovery. Lowering your intake of processed foods, alcohol, and sugary drinks can also help decrease inflammation.

  1. Aiming for balanced and healthy cells

The performance and recovery of our bodies depend entirely on our cells. When our cells are creating and using energy efficiently, our bodies recover faster. ATP (adenosine triphosphate) energy is released to give us power in what we do. The process of creating ATP energy works best when our body and cells are well-balanced, reaching a state called homeostasis.

Light Therapy, Performance, Healing, and Recovery

High-quality devices are now available in the market to help athletes and trainers enhance the body’s natural healing and recovery process through light therapy.

Light therapy is a non-invasive treatment that uses LED lights to deliver red and near-infrared light to the skin and cells. It promotes efficient cellular ATP energy production and helps restore the balance of cells and tissues. Light therapy can be done before or after a workout. Some even do it both times — before and after a workout, depending on their goals.

Pre-conditioning with light therapy before working out can also help strengthen muscle performance. It can limit muscle damage and strain, lessening the chances of inflammation or soreness. When used after a workout, it promotes the speedy recovery of muscles and accelerates its adaptability to exercise. It also helps the body process acute inflammation after physical activity.

The Relationship Between Light Therapy and Muscle Cells

Muscles are composed of millions of cells that need to release ATP energy to fulfill the body's jobs, balancing exercise and stress. Light therapy helps improve cellular ATP energy, glycogen synthesis, oxidative stress reduction, and protection against muscle damage from exercising. Light therapy also helps improve blood circulation and oxygen availability, which allows better healing and recovery. It helps with the overall improvement of physical performance and faster recovery times. It also helps limit fatigue from exercising and strength training.

Recover and Improve Your Performance with Light Therapy

As discussed, light therapy promotes faster healing and recovery and soothes cells under stress when doing strenuous workouts, incurring injuries, and experiencing inflammation. When you set aside time for recovery, you give your body and cells what they need to function, thus improving your overall performance.

At Kaiyan Medical, we offer high-quality light therapy devices to help you achieve and maintain your fitness and performance goals. If you have questions about our products and the brands we offer, please don’t hesitate to contact us. We will respond to you as soon as possible.

The Effect of Green & Red Light Therapy on Hearing

Low-level laser therapy

Low-level laser therapy (LLLT) has been practiced for over 20 years in Europe and has been introduced in the United States as a treatment for pain and postsurgical tissue repair. It has been proposed that laser energy in the red and near-infrared light spectrum may aid in the repair of tissue damage. A proposed mechanism for this therapeutic effect is the stimulation of mitochondria in the cells to produce more energy through the production of adenosine triphosphate.

Studies in humans have investigated the effects of LLLT on both hearing loss and tinnitus, with equivocal results. Some studies have found an improvement in hearing thresholds and tinnitus symptoms.

The Subjects

A total of 35 adult subjects were enrolled in the study. Two subjects withdrew from the study due to loss of interest and/or scheduling difficulty. The data from three additional subjects were not included in the analysis. One subject yielded unreliable audiometric and speech understanding data, speech scores could not be obtained from one subject with a profound hearing loss, and calibration problems compromised data from the third subject. Data from the remaining 30 subjects were included in the analyses. The experimental protocol was approved by the Institutional Review Board of The University of Iowa, and written informed consent was obtained from all participants.

The Device

An Erchonia EHL laser was used to provide the laser stimulation. The device was a portable unit that consisted of a hand-held probe and a main body. The probe contained two laser diodes. One diode produced light in the green part of the visible light spectrum (532 nm wavelength), and the other diode produced light in the red part of the visible light spectrum (635 nm wavelength). Both diodes produced energy levels of 7.5 mW (class IIIb). The laser beams from both diodes were dispersed through lenses to create parallel line-generated beams, rather than spots. A second Erchonia EHL device served as the placebo. It was identical to the treatment device, except that the laser diodes were replaced with nonfunctioning standard light-emitting diodes.

The Groups

The study used three groups: treatment, placebo, and control. Subjects were pseudorandomly assigned to one of the three groups.

Initial group assignment was random with occasional adjustment to ensure that the three groups were similar in terms of number of participants, female/male ratio, mean age of participants, and mean pure-tone audiometric thresholds. The treatment group received the laser treatment protocol using the functional laser device. The placebo group also received the laser treatment protocol, but using the nonfunctioning laser device. The control group made similarly timed visits to the laboratory but received no real or feigned “treatment.” The study used a repeated-measures design, with each subject taking a battery of pretests, followed by treatment followed by a battery of posttests.

Analysis

Data were obtained from both ears of each subject. Since no obvious differences were seen between left and right ears, data from both ears were combined in the following analyses. Strictly speaking, this likely violates the statistical assumption of independent sampling, since the test results from left and right ears of a single subject are likely to be highly correlated. None of the statistical tests used in the analyses are robust to the assumption of independent sampling, and the effect of including both ears is likely to be that of artificially increasing the sample size, making it more likely that a statistically significant result will be found. All statistical tests were conducted using a significance level of .

Conclusions

No statistically significant effect of LLLT on auditory function was found, as assessed by pure-tone audiometry, speech understanding, and TEOAEs in this test. Additionally, no individual subjects showed any clinically significant change. It remains possible that other methods of LLLT could have an effect on hearing. The type of device used was not the best one for this type of study. Further research elucidating the anatomic and physiologic bases for therapeutic effects of LLLT on hearing are needed before further clinical testing is warranted.

More References

Clinical Study | Open Access. Volume 2013 |Article ID 916370 | https://doi.org/10.1155/2013/916370

ClinicalTrials.gov (NCT01820416)

T. I. Karu, “Molecular mechanism of the therapeutic effect of low-intensity laser radiation,” Lasers in the Life Sciences, vol. 2, no. 1, pp. 53–74, 1988.View at: Google Scholar

L. Wilden and R. Karthein, “Import of radiation phenomena of electrons and therapeutic low-level laser in regard to the mitochondrial energy transfer,” Journal of Clinical Laser Medicine and Surgery, vol. 16, no. 3, pp. 159–165, 1998.View at: Google Scholar

J. Kujawa, L. Zavodnik, I. Zavodnik, V. Buko, A. Lapshyna, and M. Bryszewska, “Effect of low-intensity (3.75–25 J/cm2) near-infrared (810 nm) laser radiation on red blood cell ATPase activities and membrane structure,” Journal of Clinical Laser Medicine and Surgery, vol. 22, no. 2, pp. 111–117, 2004.View at: Google Scholar

C. K. Rhee, C. W. Bahk, P. S. Chung, J. Y. Jung, M. W. Suh, and S. H. Kim, “Effect of low-level laser treatment on cochlea hair-cell recovery after acute acoustic trauma,” Journal of Biomedical Optics, vol. 17, no. 6, Article ID 068002, 2012.View at: Google Scholar

G. I. Wenzel, B. Pikkula, C. H. Choi, B. Anvari, and J. S. Oghalai, “Laser irradiation of the guinea pig basilar membrane,” Lasers in Surgery and Medicine, vol. 35, no. 3, pp. 174–180, 2004.View at: Publisher Site | Google Scholar

P. Plath and J. Olivier, “Results of combined low-power laser therapy and extracts of Ginkgo biloba in cases of sensorineural hearing loss and tinnitus,” Advances in Oto-Rhino-Laryngology, vol. 49, pp. 101–104, 1995.View at: Google Scholar

S. Tauber, W. Beyer, K. Schorn, and R. Baumgartner, “Transmeatal cochlear laser (TCL) treatment of cochlear dysfunction: a feasibility study for chronic tinnitus,” Lasers in Medical Science, vol. 18, no. 3, pp. 154–161, 2003.View at: Publisher Site | Google Scholar

A. Gungor, S. Dogru, H. Cincik, E. Erkul, and E. Poyrazoglu, “Effectiveness of transmeatal low power laser irradiation for chronic tinnitus,” Journal of Laryngology and Otology, vol. 122, no. 5, pp. 447–451, 2008.View at: Publisher Site | Google Scholar

D. Cuda and A. de Caria, “Effectiveness of combined counseling and low-level laser stimulation in the treatment of disturbing chronic tinnitus,” International Tinnitus Journal, vol. 14, no. 2, pp. 175–180, 2008.View at: Google Scholar

A. H. Salahaldin, K. Abdulhadi, N. Najjar, and A. Bener, “Low-level laser therapy in patients with complaints of tinnitus: a clinical study,” ISRN Otolaryngology, vol. 2012, Article ID 132060, 5 pages, 2012.View at: Publisher Site | Google Scholar

M. Rogowski, S. Mnich, E. Gindzieńska, and B. Lazarczyk, “Low-power laser in the treatment of tinnitus — a placebo-controlled study,” Otolaryngologia Polska, vol. 53, no. 3, pp. 315–320, 1999.View at: Google Scholar

F. Mirz, R. Zachariae, S. E. Andersen et al., “The low-power laser in the treatment of tinnitus,” Clinical Otolaryngology and Allied Sciences, vol. 24, no. 4, pp. 346–354, 1999.View at: Publisher Site | Google Scholar

T. Nakashima, H. Ueda, H. Misawa et al., “Transmeatal low-power laser irradiation for tinnitus,” Otology and Neurotology, vol. 23, no. 3, pp. 296–300, 2002.View at: Google Scholar

R. Teggi, C. Bellini, B. Fabiano, and M. Bussi, “Efficacy of low-level laser therapy in Ménière’s disease: a pilot study of 10 patients,” Photomedicine and Laser Surgery, vol. 26, no. 4, pp. 349–353, 2008.View at: Publisher Site | Google Scholar

R. Teggi, C. Bellini, L. O. Piccioni, F. Palonta, and M. Bussi, “Transmeatal low-level laser therapy for chronic tinnitus with cochlear dysfunction,” Audiology and Neurotology, vol. 14, no. 2, pp. 115–120, 2009.View at: Publisher Site | Google Scholar

C. H. Graham, “Behavior, perception and the psychophysical methods,” Psychological Review, vol. 57, no. 2, pp. 108–120, 1950.View at: Publisher Site | Google Scholar

M. Nilsson, S. D. Soli, and J. A. Sullivan, “Development of the hearing in noise test for the measurement of speech reception thresholds in quiet and in noise,” Journal of the Acoustical Society of America, vol. 95, no. 2, pp. 1085–1099, 1994.View at: Google Scholar

R. M. Cox, G. C. Alexander, and C. Gilmore, “Development of the connected speech test (CST),” Ear and Hearing, vol. 8, no. 5, supplement, pp. 119S–126S, 1987.View at: Google Scholar

R. M. Cox, G. C. Alexander, C. Gilmore, and K. M. Pusakulich, “Use of the connected speech test (CST) with hearing-impaired listeners,” Ear and Hearing, vol. 9, no. 4, pp. 198–207, 1988.View at: Google Scholar

R. Probst, B. L. Lonsbury-Martin, and G. K. Martin, “A review of otoacoustic emissions,” Journal of the Acoustical Society of America, vol. 89, no. 5, pp. 2027–2067, 1991.View at: Google Scholar

D. H. Keefe, “Double-evoked otoacoustic emissions — I: measurement theory and nonlinear coherence,” Journal of the Acoustical Society of America, vol. 103, no. 6, pp. 3489–3498, 1998.View at: Publisher Site | Google Scholar

G. A. Studebaker, “A “rationalized” arcsine transform,” Journal of Speech and Hearing Research, vol. 28, no. 3, pp. 455–462, 1985.View at: Google Scholar

R. S. Schlauch and P. Nelson, “Puretone evaluation,” in Handbook of Clinical Audiology, J. Katz, L. Medwestsky, R. Burkard, and L. Hood, Eds., pp. 30–49, Lippincott Williams & Wilkins, Baltimore, Md, USA, 2009.View at: Google Scholar

L. E. Humes, D. L. Wilson, N. N. Barlow, and C. Garner, “Changes in hearing-aid benefit following 1 or 2 years of hearing-aid use by older adults,” Journal of Speech, Language, and Hearing Research, vol. 45, no. 4, pp. 772–782, 2002.View at: Google Scholar

M. S. Robinette, M. J. Cevette, and R. Probst, “Otoacoustic emissions and audiometric outcomes across cochlear and retrocochlear pathology,” in Otoacoustic Emissions: Clinical Applications, S. Robinette and T. J. Glattke, Eds., pp. 227–272, Thieme, New York, NY, USA, 2007.View at: Google Scholar


Healing Muscular Pain with Light Therapy

Light Therapy Healing Muscular Pain

When it comes to pain, we could hardly avert it! Especially the muscle pain. Given that the human body has over 600 muscles, it is tough to avoid muscle pain. Evidently, one out of three Americans is affected by muscle pain annually.

Not only this, Musculoskeletal pain affects around 116 million Americans, which results in poor productivity, missed work or school, fatigue, and lost interest in work.

But doesn’t we treatments for this chronic pain? Of course, we do have several options. Currently, therapies available consist of non-steroidal anti-inflammatory drugs, steroid injections, pain medications, and surgery. Each of these has its own specific risk profiles.

What we need now is an effective solution that is less time-consuming, low risk, safe and non-invasive, and yet cost-effective. All these features are available in treatment; we call Low Laser Light Therapy (LLLT). Light therapy has been in the medical field over the past forty years. Light therapy has been demonstrated to lessen inflammation and edema, promote healing in a range of musculoskeletal pathologies. LLLT is being accepted around the globe. This is an advanced, cost-effective, non-invasive therapy for pain that could elevate the quality of life while reducing your financial strains. The causes of muscular pain are numerous. Hence, LLLT helps people from all fields like sports, fitness, medical, and even old age.


Mechanism of LLLT

In this process, light with a wavelength in the red to the near-infrared region of the spectrum (660nm–905nm) is employed on the skin surface. The reason for using these wavelengths is that they have the ability to penetrate the skin and soft/hard tissues. From various conducted clinical trials, this treatment is proven to have a good effect on pain, inflammation, and repairing of the tissues. The therapy goes from 30 to 120 seconds or more a week, depending upon the pain's severity.

Based on the tissue condition, the therapy can go on for weeks or months. LLLT has resulted in relief and reduction of inflammation, pain relief, and accelerated tissue regeneration.

But how does the light actually work?

LLLT in the Treatment of Pain

Do you know that many acute orthopedic conditions such as strains, sprains, muscular back pain, frozen shoulder, neck and back pain, etc., are amenable to Low Laser Light Therapy (LLLT)?

The Infra-Red light relieves pain in a different section of the body and increases relaxation sensation while also comforting the muscles. LLLT has been shown to enhance the multiplication of cells like fibroblasts, keratinocytes, endothelial cells, and lymphocytes. Fibroblasts and keratinocytes are two major cell types that respond to the inflammatory phase in the repair/regeneration process.

LLLT can enhance neovascularization, promote angiogenesis, and increase collagen synthesis to succor in the healing of acute and chronic wounds. The LED light sessions have shown the ability to heal skin, nerves, tendons, cartilage, and bones. Low-intensity LLLT stimulates mitochondria and also enhances the mitochondrial membrane potential.

The peripheral nerve endings of nociceptors (also known as the pain receptors), consisting of the thinly myelinated and unmyelinated, slow-conducting C fibers, lie within the epidermis. This complex network converts harmful stimuli into action potentials. Moreover, these nerve endings lie on the surface or superficial in nature, making the LLLT wavelength penetration work easy.


Hence, with the rise of chronic pain in different countries, it is imperative to validate cost-effective and safe techniques for managing painful conditions, allowing people to live active and productive lives. Light therapy is constantly evolving in relieving muscular pain. It improves the muscle's endurance, reduces muscle soreness, joint pain, and inflammation.

It’s time to let go of the pain!!

Experience the difference with light therapy from Kaiyan Medical.

More References:

https://pubmed.ncbi.nlm.nih.gov/12605431/

https://pubmed.ncbi.nlm.nih.gov/27472858/

https://arthritis-research.biomedcentral.com/track/pdf/10.1186/s13075-015-0882-0

https://www.sciencedirect.com/science/article/pii/S0004951414601276?via%3Dihub

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743666/

Red Light Therapy - 101

We are not just made of biochemical matter. We are charged energy beings, constantly interacting with the environment. Light plays a crucial role in this natural process. Comprehensive new research has unearthed a full new understanding of how our cells function optimally. Food is not the only way we obtain energy; the light also charges us.

Science now shows your body operates like a battery. Certain wavelengths of sunlight power it, and your general health is determined by your ability to receive and maintain a charge. This is what light therapy is about.

What is Red Light Therapy

Light at certain wavelengths is scientifically proven to interact with the body in beneficial ways.

Red light, comprising both red and near-infrared wavelengths, is a unique healing part of the electromagnetic spectrum, and it is one of the most natural ways to charge the body. It is now used as a new form of therapy under the umbrella term Photobiomodulation(PBM)

Red light wavelengths ranging from 600–680nm. Red light boosts the formation of collagen and elastin and assists in cell communication. It penetrates superficially and can be used for skin conditions.

Near-Infrared wavelengths ranging from 750–850nm. NIR stimulates healing, increases mitochondrial function, and improves blood flow and tissue oxygenation. It penetrates deeper into the body.

A high-quality home device like those produced by Kaiyan uses medical-grade LEDs to shine natural red and near-infrared light on your body. Like the wavelengths of light your body needs from natural sunlight, without the heat or UV rays that cause sun damage and without the need for sunny weather. Check the list of best light therapy masks.

How to Recharge your Body

Electric charge is a fundamental property of the body. The surfaces in our bodies — such as membranes, proteins, and DNA — are all charged, negatively or positively, depending on whether they lose or gain electrons.

At the core of your body’s power to heal itself are sub-cellar organelles called mitochondria. The number of mitochondria in a cell varies widely by organism, tissue, and cell type and are concentrated in organs with high energy demands such as the brain, heart, liver, skin, and muscles.

This is because mitochondria generate most of the body's chemical energy supply via the ATP (adenosine triphosphate). They also regulate various other tasks, such as signaling, cellular differentiation, and maintaining control of the cell cycle and cell growth. This is why they are often referred to as the powerhouse of the cell.

Mitochondria
  1. LED light at a wavelength from 600–680nm(red) and between 810–850nm(infrared) is delivered to the tissue via the red light therapy device.
  2. The light enters the cell’s mitochondria and is absorbed by the chromophores, including the protein cytochrome c oxidase(CCO) and EZ water, increasing its activity.
  3. As a result of this highlighted activity, three molecules are affected. Adenosine Triphosphate(ATP), Reactive Oxygen Species (ROS), and Nitric Oxide (NO).
Water

Approximately 70% of our body weight and 99% of our bodies ’ molecules are made of water, and this water is in a charged state.

Recent research by Prof Gerald Pollock of the University of Washington has shown that water adjacent to a cell or mitochondrial membrane is so-called structured water. This is also called EZ (exclusion zone) water because it creates a separation of charge. Positive proton is excluded and pushed to the bulk water, and a lattice-like negatively charged water for near the membrane. This increases the voltage across the membrane—this charge separation of water in the body functions as the positive and negative poles of a battery.

What Does “Red Light Therapy” Mean?

As a term, “red light therapy” refers to treatments from LEDs or cold lasers that deliver wavelengths of natural red and near-infrared light.

The term does not include white light, blue light, or blue LED masks, and it is not the same as full-spectrum light. Some people may include infrared or far-infrared wavelengths along with red light therapy, but those are typically used in dry saunas because of their ability to produce heat. Red light therapy does not rely on heat, a major difference between natural light treatments and heat-based modalities like an infrared sauna, traditional sauna, or other heat therapy type.

Generally, “red light therapy” describes natural light treatments that deliver the same therapeutic red and near-infrared wavelengths as natural sunlight. This differs from artificial light treatments like tanning — or bright light therapy from light therapy lamps, lightboxes, or happy-light if you’re interested in natural light treatments for seasonal affective disorder.

The following terms may also call red light therapy: RLT, photobiomodulation (PBM), phototherapy, LED therapy, LED light therapy, infrared therapy, low-level laser therapy, or low-level light therapy (LLLT).

A Multilevel Treatment

Red light therapy works on multiple levels in the body.

Molecular

  • Chromophores, cytochrome c oxidase, water, opsins
  • Retrograde mitochondrial signaling
  • Light-sensitive ion channels
  • Adenosine triphosphate ATP
  • Reactive Oxygen Species ROS

Calcium

  • Heat-shock proteins
  • Melatonin
  • Brain-derived neurotrophic factor
  • Gene transcription factors
  • Akt/mTOR/CyclinD1 pathway

Cellular

  • Inflammation, Cytoprotection, Proliferation
  • Protein synthesis
  • Stem cell production and migration
  • Immune cell viability
  • Retrograde mitochondrial signaling
  • Transforming growth factor
  • Pro-and anti-inflammatory cytokines
  • Vascular endothelial
  • Mitochondrial membrane potential

Tissue

  • Muscles: Increase endurance, tone density
  • Brain: Improves cognition and immune
  • Nerves: Repair and pain relief
  • Healing: Bones, tendons, and wounds
  • Hair: Increases growth
  • Skin: Improvements of the collagen network, anti-aging, skin disorders
  • Fat: Fat re-absorption improved by enhanced micro-circulation
  • Lymph: Improved immunity
Systemic Effects

Red light therapy affects multiple bodily systems:

Fascia

The fascia is a complex web of sensitive and highly interconnected connective tissue beneath the skin that attaches, stabilizes, encloses, and separates muscles and other internal organs.

Fascia is primarily made from hydrated collagen-Protein chains in a triple helix formation surrounded by water, with a capacity to generate an electric charge in response to applied mechanical stress (piezoelectric).

The bio-electrical nature of the collagen-rich matrix is the key to understanding how pathological changes in one part of the body may cause a cascade of “remote effects” in seemingly unrelated areas and organ systems. The fascia is the long-overlooked but absolutely crucial interconnecting organ of the human body. The therapeutic effect of red light energy can be carried through the fascia network to other parts of the body where it is needed. This is turn, elevates the body’s capacity to communicate via this charged matrix in a positive feedback loop.

The well-known energy meridians of traditional Chinese medicine may actually be low resistance pathways operating through the fascia, conveying energy to the rest of the body.

Gut-Brain Axis

The gut-brain axis links the emotional and cognitive center of the brain with peripheral intestinal functions. Red light energy applied to the abdomen area can therefore influence mood and neuropsychological issues via several mechanisms:

  • Reduction in bowel inflammation and gut spasms.
  • Stimulation of neurotransmitters and hormones in the gut, including serotonin, leptin, and ghrelin.
  • Modulation of the micro-biome. The gut microbes are sensitive to light energy and respond to light energy with differences in growth, migration, and proliferation of the different species.
  • The increasing availability of neurotransmitters activates the brain’s immune system, increases blood flow, and removes toxins.
  • Increased blood circulation and reduced blood pressure leading to a reduction of anxiety and brain fog.
  • Modulation of the vagus nerve, one of the biggest nerves connecting the gut and brain. This plays an important role in stress and social communication, communicating motor and sensory impulses to every organ in the body.

Immune System

Beaming red light and near-infrared light onto cells creates a short, low-dose metabolic stress that builds up the cells' anti-inflammatory, anti-oxidant, and natural defense systems, making the body stronger and more resilient to infections.

This is the concept of hormesis; safe, low-level exposure to stressor results in increased resistance to illness. Red light has been shown to influence the immune response in several ways:

  • Activation of the mast cells leading to the movement of leukocytes and reduced inflammation.
  • Mast cell DE-granulation and the release of pro-inflammatory cytokines.
  • Increased infiltration of the tissues by leukocytes.
  • Enhanced proliferation, maturation, and motility of fibroblasts
  • Increased production of fibroblast growth factor.
  • Lymphocyte activation and proliferation.
  • Macro-phages activated to act as phagocytes.

Circulatory System

Red light therapy has been shown to aid the circulatory system's functioning and increase the micro-circulation of blood, one of the most recognized and well-documented effects of this therapy.

Red light stimulates the formation of new capillaries carrying more oxygen to the body.

A good oxygen supply is intricately involved in numerous biological processes, including cell proliferation, angiogenesis, and protein synthesis, required to restore tissue function and integrity.

Increased circulation allows for waste products to be carried away more effectively. It triggers and heightens the body’s own scavenging process for and ingesting degenerated cells for clean-up.

In fact, increased micro-circulation of blood is thought to be the most vital function for healing the body for almost every illness. For general well-being, Nutrient-rich blood and efficient waste removal is strongly linked to good health.

Nervous System

The nervous system is a complex electrical system, including the brain and spinal cord. It collects, processes, and responds to the input of energy-be it light, sound, heat, or pressure — and it relays these messages to the brain and around the body.

Red light energy affects the nervous system in several crucial ways:

  • Myelination of fibers and a better lamellar organization of the myelin sheath.
  • Improvement of electrophysiological function.
  • Facilitation of neural regeneration.
  • Release of growth factors.
  • Increase of vascular network and collagen.
  • Faster regeneration of nerve lesions and functional improvement of damaged nerves.

The peripheral nerves can be damaged by infection or high sugar levels in the case of diabetic neuropathy.

Red light therapy is being explored as a promising drug-free therapy for all kinds of nerve damage.

Stem Cells

At the frontier of science, red light therapy shows huge promise in current research to stimulate the growth of stem cells in the body and maximize the effect of stem cell implantation for a wide variety of medical purposes.

Therefore, red light may be useful after surgery to stimulate stem cells to aid the repair of tissues and possibly organs.

Light at certain wavelengths has also been shown to coax stem cells to repair teeth, so red light therapy could soon revolutionize dental treatments. Indeed, some progressive dental clinics now offer red light therapy as an alternative to conventional drug and drill treatments.

Red light therapy has been shown to stimulate mesenchymal stem cells in the bone marrow to enhance their capacity to infiltrate the brain.

This has implications for healing degenerative conditions such as dementia, Alzheimer’s, and Parkinson’s disease , currently lacking any orthodox treatment solution.

Where Did Red Light Therapy Come From?

Red light therapy has become a popular natural health intervention, both in professional settings and with home devices.

Light therapy technology has been used in medicine for decades, and NASA experimented with red light therapy use in space in the 1980s and 1990s. In the last 10–20 years, red light therapy has become more widely used thanks to breakthroughs in LED lighting technology that have made affordable home devices possible.

Major advances in clinical light therapy research, and increased public interest in natural health technologies, have also contributed to the growing use and popularity of red light therapy.

In 2016, Kaiyan Medical was the first red light therapy manufacturer to offer affordable, medical-grade devices to consumers for convenient, at-home use.

Relieve Pain And Discomfort

In humans, photobiomodulation is reportedly effective against various pain conditions, including mucositis, carpal tunnel syndrome, orthodontic pain, temporomandibular joint pain, neck pain, neuropathic pain from amputation, and menstrual cramps.

Red light therapy significantly reduces the severity of pain hypersensitivity while improving sensorimotor function.

These improvements are preceded by an anti-inflammatory microglia/macrophage cell population in the injury zone, thereby providing a lasting pain relief effect.

Red light therapy has been shown to yield effective pain relief via the modulation of multiple mechanisms:

  • Inhibitory cyclooxygenase and prostaglandins
  • Modulating nerve transmission
  • Increasing endorphins serotonin release
  • Stimulating metabolism
  • Activating peripheral opioid receptors
Repair Skin

Red light therapy is used for the rapid and safe healing of wounds from burns, surgery incisions, scars, diabetic neuropathy, ulcers, and bedsores.

Faster and better wound healing was one of NASA’s original findings and one of the key recognized uses for this technology. Red and near-infrared light promote beneficial effects during all four phases of the wound-healing process:

  • Coagulation
  • Inflammation
  • Migration
  • Remodeling

These processes are regulated by many growth factors connected with nitric oxide (NO) signaling release, which is modulated by light energy.

A major typical inhibiting factor for the body’s ability to recover from a wound is low oxygen flow. Therefore, the unique ability of red light to increase oxygen flow to the affected area has a massive effect on the healing process.

By reducing inflammation, oxygenation of the area, and formation of new blood vessels, a rapid healing process unfolds with less pain and scarring.

Red light energy may also reduce or prevent the need for pharmaceutical painkiller medication during the healing process.

Revive Immunity

If your body is energized on a cellular level and communication between the organ systems is efficient, your body will naturally develop disease resistance.

Your immune defense works to fend off bacteria and viruses all the time. Red light therapy boosts this system in several ways.

It releases nitric oxide and melatonin, which are involved in DNA repair and have a powerful antimicrobial effect.

It also works through a process known as hormesis. When red and near-infrared light is beamed into cells, it causes mild metabolic stress, which results in cells engaging their anti-inflammatory and antioxidant response.

In this way, the body is primed and ready to respond better to infections. Boosted immunity is also a natural consequence of other systemic effects of red light therapy.

Studies have shown a variety of benefits to the immune system:

  • Improved melatonin production
  • Improved antioxidant production
  • Increased micro-circulation enabling the transportation of immune cells.
  • Promotes activity in the lymph nodes
  • Increased NO levels
  • Better flow of neurotransmitters
  • Boosted collagen and elastin production
  • The more efficient function of cells and organelles
  • Boosts T cells pre-operatively
  • Improved thyroid function
Reduce Inflammation

Inflammation can be acute and topical ( short-lived, caused by accidents, sprains, and infections ), chronic and general ( long-term, caused by persistent conditions ).

While acute inflammation is a healthy physical healing response, chronic and general inflammation can be detrimental to health and often goes undetected.

Currently, the main treatment for inflammation in the body is NSAID or steroid drugs, both of which have side effects and disrupt the body's healing process. Red light therapy stimulates the body to activate its own healing mechanism, dramatically reducing the health risks associated with long term drug use.

Red light therapy works by decreasing the number of inflammatory cells, increasing fibroblast proliferation ( the cell that synthesizes the extra-cellular matrix and collagen ), stimulating angiogenesis ( the formation of new blood vessels ), and activating the body’s innate anti-inflammatory, antioxidant defenses.

The following conditions, associated with chronic and acute inflammation, are currently being investigated as highly promising targets for red light therapy.

  • Arthritis
  • Asthma
  • Sinusitis
  • Muscular sprains
  • Fibro-myalgia
  • Neuron inflammatory disorders such as Alzheimer’s
  • Irritable bowel syndrome and colitis
  • Rheumatic conditions
Regain Performance

Red light therapy has become a hot topic in sports and performance. Not only is it safe and non-toxic-it yields rapid and lasting results in many areas of application.

Besides the overwhelmingly beneficial effects on health overall, red light therapy supports muscle growth and repair by increasing the amount of ATP available, which allows for better performance and faster recovery.

Red light therapy used before training is known to prepare and strengthen the body and physical exertion to help with recovery.

Documented effects from red light therapy include:

  • Reducing DOMS ( Delayed Onset Muscle Soreness )
  • Greater endurance and performance
  • Improving sleep quality
  • Increasing sexual function and libido ( Including Testosterone )
  • Aiding weight loss
  • Boosting cognitive function
  • Reversing skin aging
  • Reducing cellulite
Red Light Therapy for Depression and Seasonal Affective Disorder

Seasonal affective disorder (SAD) is a type of depression that impacts at least 5% of Americans, especially in the winter months, when natural light exposure is lowest. SAD is also called seasonal depression, winter depression, or the winter blues.

Some people treat SAD symptoms with treatment options like bright white light therapies that mimic the sun’s light intensity at a bright time of day.

More researchers and physicians have used natural light treatments like red light therapy to help with natural light deficiency and the winter blues in recent years in conjunction with antidepressant medication and psychotherapy.

Who Uses Red Light Therapy?

In addition to the growing number of people using red light therapy devices in their home, red light therapy systems can be found in many professional and clinical settings:

Skincare Professionals: Red light therapy is a popular skin treatment among Hollywood celebrities for anti-aging, and it’s used by leading skincare professionals like estheticians and dermatologists to treat skin conditions and promote collagen production.

Health Practitioners: Red light therapy is an emerging subspecialty of medicine in a wide range of fields. From oncologists treating cancer side effects, to dentists reducing oral inflammation, to physicians treating mental health conditions, red light therapy is becoming more widespread in clinical practice.

Natural Health Experts: Leading voices in natural health and wellness like Dr. Sarah Ballantyne, Dave Asprey, and Ben Greenfield use red light therapy. So do Paleo and Keto health experts like Mark Sisson, Dr. Anthony Gustin, Luke Storey, and Robb Wolf.

Sports Medicine Pros: Light therapy companies work side by side with the National Association of Sports Medicine (NASM), and red light therapy is used to heal sports injuries by sports medicine professionals across the globe. Including the top trainers and doctors on the PGA Tour, like Dr. Troy Van Biezen and Dr. Ara Suppiah.

Elite Pro Athletes: Red light therapy is a popular training tool across pro sports, from NFL stars like Patrick Peterson, to UFC champs like Anthony Pettis, to gold medal gymnast Sanne Wevers.

Fitness & Training: World-class personal trainers like Lacey Stone and Jorge Cruise use red light therapy to both enhance performance and improve the muscle recovery process.

Supportive Cancer Care: The Multinational Association of Supportive Care in Cancer (MASCC) recommends red light therapy for the treatment of oral mucositis (OM), a common and debilitating symptom of cancer treatment.

Sources and References:

Klepeis N., Nelson W., Ott W., Robinson J., Tsang A., Switzer P., Behar J., Hern S., Engelmann W. “The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants”. Journal of Exposure Analysis and Environmental Epidemiology 2001.

Hamblin M. “Mechanisms and applications of the anti-inflammatory effects of photobiomodulation.” AIMS Biophys. 2017.

LED Lights Used in Plant Growth Experiments for Deep Space Missions. NASA.

Gál P,  Stausholm MB, et al. Should open excisions and sutured incisions be treated differently? A review and meta-analysis of animal wound models following low-level laser therapy. Lasers in Medical Science. 2018 Aug.

John Foley, David B Vasily, et al. 830 nm light-emitting diode (led) phototherapy significantly reduced return-to-play in injured university athletes: a pilot study. Laser Therapy. 2016 Mar.

Kim HK, Choi JH. Effects of radiofrequency, electroacupuncture, and low-level laser therapy on the wrinkles and moisture content of the forehead, eyes, and cheek. Journal of Physical Therapy Science. 2017 February.

Wunsch A and Matuschka K. A Controlled Trial to Determine the Efficacy of Red and Near-Infrared Light Treatment in Patient Satisfaction, Reduction of Fine Lines, Wrinkles, Skin Roughness, and Intradermal Collagen Density Increase. Photomedicine and Laser Surgery. Feb 2014.

Barolet D, Roberge CJ, et al. Regulation of skin collagen metabolism in vitro using a pulsed 660 nm LED light source: clinical correlation with a single-blinded study. Journal of Investigative Dermatology. 2009 December.

Morita T., Tokura H. “ Effects of lights of different color temperature on the nocturnal changes in core temperature and melatonin in humans” Journal of Physiological Anthropology. 1996, Sept.

Naeser M., Zafonte R, Krengel MH, Martin PI,  Frazier J, Hamblin MR, Knight JA, Meehan WP, Baker EH. “Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study”  Journal of Neurotrauma. 2014, June.

Liu KH, Liu D, et al. “Comparative effectiveness of low-level laser therapy for adult androgenic alopecia: a system review and meta-analysis of randomized controlled trials.” Lasers in Medical Science. 2019 Aug.

Gupta AK, Mays RR, et al. “Efficacy of non-surgical treatments for androgenetic alopecia: a systematic review and network meta-analysis.” JEADV. 2018 Dec.

Afifi L, Maranda EL, et al. “Low-level laser therapy as a treatment for androgenetic alopecia.” Lasers in Surgery and Medicine. 2017 Jan.

Hofling DB, Chavantes MC, et al. Low-level laser in the treatment of patients with hypothyroidism induced by chronic autoimmune thyroiditis: a randomized, placebo-controlled clinical trial. Lasers in Surgery and Medicine. May 2013.

Hofling DB, Chavantes MC, et al. Assessment of the effects of low-level laser therapy on the thyroid vascularization of patients with autoimmune hypothyroidism by color Doppler ultrasound. ISRN Endocrinology. 2012.

Hofling DB, Chavantes MC, et al. Low-level laser therapy in chronic autoimmune thyroiditis: a pilot study. Lasers in Surgery and Medicine. 2010 Aug.

Vladimirovich Moskvin S., Ivanovich Apolikhin O. Effectiveness of low level laser therapy for treating male infertility. Biomedicine (Taipei). 2018 June.

Ban Frangez H., Frangez I., Verdenik I., Jansa V., Virant Klun I. Photobiomodulation with light-emitting diodes improves sperm motility in men with asthenozoospermia. Laser in Medical Science, 2015 Jan.

Salman Yazdi, R., Bakhshi, S., Jannat Alipoor, F. et al. Effect of 830-nm diode laser irradiation on human sperm motility. Lasers Med Sci. 2014.

Chow KW, Preece D, Burns MW. Effect of red light on optically trapped spermatozoa. Biomedical Optics Express. 2017 Aug.

Preece D., Chow KW, Gomez-Godinez V., Gustafson K., et al. Red light improves spermatozoa motility and does not induce oxidative DNA damage. Scientific Reports. 2017 Apr.

American Psychiatric Association

Cassano P, Petrie SR, et al. Transcranial Photobiomodulation for the Treatment of Major Depressive Disorder. The ELATED-2 Pilot Trial. Photomedicine and Laser Surgery. 2018 October.

Barrett DW, et al. Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. 2013 Jan.

Blanco NJ, Maddox WT, Gonzalez-Lima F. Improving executive function using transcranial infrared laser stimulation. Journal of Neuropsychology. 2017 Mar.

Paolillo FR, Borghi-Silva A, et al. New treatment of cellulite with infrared-LED illumination applied during high-intensity treadmill training. J Cosmet Laser Ther. 2011 Aug;13(4):166-71.

Caruso-Davis MK, Guillot TS, Podichetty VK, Mashtalir N, Dhurandhar NV, Dubuisson O, Yu Y. Efficacy of low-level laser therapy for body contouring and spot fat reduction. Obes Surg. 2011. Jun;21(6):722-9.

Jackson RF, Dedo DD, Roche GC, et al. Low-level laser therapy as a non-invasive approach for body contouring: a randomized, controlled study. Lasers in Surgery and Medicine. Dec 2009;41(10):99-809.

McRae E and Boris J. Independent evaluation of low-level laser therapy at 635 nm for non-invasive body contouring of the waist, hips, and thighs. Lasers in Surgery and Medicine. Jan 2013.

Avci P, Gupta A, et al. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Seminars in Cutaneous Medicine and Surgery. Mar 2013; 32(1): 41-52.

Light Therapy Helping the Crisis that’s Being Ignored: PTSD

Post-traumatic Stress Disorder

Post-traumatic stress disorder (PTSD) is a mental health condition that’s triggered by a terrifying event — either experiencing it or witnessing it. Symptoms may include flashbacks, nightmares, and severe anxiety, as well as uncontrollable thoughts about the event.

Most people who go through traumatic events may have temporary difficulty adjusting and coping, but with time and good self-care, they usually get better. If the symptoms get worse, last for months or even years, and interfere with your day-to-day functioning, you may have PTSD.

Getting effective treatment after PTSD symptoms develop can be critical to reduce symptoms and improve function.

PTSD symptoms are generally grouped into four types: intrusive memories, avoidance, negative changes in thinking and mood, and changes in physical and emotional reactions. Symptoms can vary over time or vary from person to person

The Light Helper, the EMDR Therapy

Eye Movement Desensitization and Reprocessing (EMDR) therapy is an interactive psychotherapy technique used to relieve psychological stress. It is an effective treatment for trauma and post-traumatic stress disorder (PTSD).

During EMDR therapy sessions, you relive traumatic or triggering experiences in brief doses while the therapist directs your eye movements.

EMDR is thought to be effective because recalling distressing events is often less emotionally upsetting when your attention is diverted. This allows you to be exposed to the memories or thoughts without having a strong psychological response.

Over time, this technique is believed to lessen the impact that the memories or thoughts have on you.

What are the Benefits of EMDR Therapy?

People who are dealing with traumatic memories and those who have PTSD are thought to benefit the most from EMDR therapy.

It’s thought to be particularly effective for those who struggle to talk about their past experiences.

Although there is not sufficient research to prove its effectiveness in these areas, EMDR therapy is also being used to treat:

How Does EMDR Therapy Work?

EMDR therapy is broken down into eight different phases, so you’ll need to attend multiple sessions. Treatment usually takes about 12 separate sessions.

Phase 1: History and treatment planning

Your therapist will first review your history and decide where you are in the treatment process. This evaluation phase also includes talking about your trauma and identifying potential traumatic memories to treat specifically.

Phase 2: Preparation

Your therapist will then help you learn several different ways to cope with the emotional or psychological stress you’re experiencing.

Stress management techniques such as deep breathing and mindfulness may be used.

Phase 3: Assessment

During the third phase of EMDR treatment, your therapist will identify the specific memories that will be targeted and all the associated components (such as the physical sensations that are stimulated when you concentrate on an event) for each target memory.

Phases 4–7: Treatment

Your therapist will then begin using EMDR therapy techniques to treat your targeted memories. During these sessions, you will be asked to focus on a negative thought, memory, or image.

Your therapist will simultaneously have you do specific eye movements. The bilateral stimulation may also include taps or other movements mixed in, depending on your case.

After the bilateral stimulation, your therapist will ask you to let your mind go blank and notice the thoughts and feelings you’re having spontaneously. After you identify these thoughts, your therapist may have you refocus on that traumatic memory, or move on to another.

If you become distressed, your therapist will help bring you back to the present before moving on to another traumatic memory. Over time, the distress over particular thoughts, images, or memories should start to fade.

Phase 8: Evaluation

In the final phase, you’ll be asked to evaluate your progress after these sessions. Your therapist will do the same.

How Effective is EMDR Therapy?

Multiple independent and controlled studies have shown that EMDR therapy is an effective treatment for PTSD. It’s even one of the Department of Veterans Affairs’ strongly recommended options to treat PTSD.

A 2012 study of 22 people found that EMDR therapy helped 77 percent of the individuals with a psychotic disorder and PTSD. It found that their hallucinations, delusions, anxiety, and depression symptoms were significantly improved after treatment. The study also found that symptoms were not exacerbated during treatment.

An older study trusted Source that compared EMDR therapy to typical prolonged exposure therapy, found that EMDR therapy was more effective in treating symptoms. The study also found that EMDR therapy had a lower dropout rate from participants. Both, however, offered a reduction in the symptoms of traumatic stress, including both anxiety and depression.

Several small studies have also found evidence that EMDR therapy is not only effective in the short term but that its effects can be maintained long term. One 2004 study evaluated people several months after they were given either “standard care” (SC) treatment for PTSD or EMDR therapy.

During and immediately after treatment, they noticed that EMDR was significantly more efficient in reducing symptoms of PTSD. During the three- and six-month follow-ups, they also recognized that participants maintained these benefits long after the treatment had ended. Overall, the study found that EMDR therapy gave people a longer-lasting reduction in symptoms than SC.

EMDR therapy has proven to be effective in treating trauma and PTSD. It may also be able to help treat other mental conditions like anxiety, depression, and panic disorders.

Some people may prefer this treatment to prescription medications, which can have unexpected side effects. Others may find that EMDR therapy strengthens the effectiveness of their medications. In Kaiyan Medical, we can help you create your own EMDR therapy device.

References
  • Berg DP, et al. (2012). Treating trauma in psychosis with EMDR: A pilot study. DOI:
    10.1016/j.jbtep.2011.09.011
  • Eye movement desensitization and reprocessing therapy. (2017).
    apa.org/ptsd-guideline/treatments/eye-movement-reprocessing.aspx
  • Hase M, et al. (2015). Eye movement desensitization and reprocessing (EMDR) therapy in the treatment of depression: A matched pairs study in an inpatient setting. DOI:
    10.1002/brb3.342
  • Ironson G, et al. (2002). Comparison of two treatments for traumatic stress: A community-based study of EMDR and prolonged exposure.
    ncbi.nlm.nih.gov/pubmed/11748600
  • Oren E, et al. (2012). EMDR therapy: An overview of its development and mechanisms of action. DOI:
    10.1016/j.erap.2012.08.005
  • Shapiro, F. (2014). The role of eye movement desensitization and reprocessing (EMDR) therapy in medicine: Addressing the psychological and physical symptoms stemming from adverse life experiences. DOI:
    10.7812/TPP/13–098

The Sleeping Beauty Secret: The Red Light Therapy

Lack of sleep is a villain in America and Europe. Light intake is a big part of the problem. Over 65% of adults say they don’t get enough good sleep every week. Most people also don’t get nearly enough natural light for optimal health: the average American spends over 90% of their time indoors.

In addition to not getting enough natural light, people today are surrounded by artificial blue light from screens and overhead lighting. An overload of artificial blue light can cause headaches and make it harder to get to sleep and stay asleep. When we take in all that bright blue light from laptops, TVs, and phones, especially before we go to bed, our bodies get the signal that it's time to be awake, even if we're tired.

Melatonin is the naturally-occurring hormone that regulates sleep and wakefulness. Emerging research is showing that red light therapy treatments can help people produce more of their own, natural melatonin than exposure to other light sources like blue light. Red light therapy is natural light. It’s much less bright than blue light, with a lower color temperature than daytime sun, as the image above shows. Research has shown that red light doesn’t upset your sleep cycle like bright blue light. Red light therapy is showing great clinical results for people with insomnia and sleep disorders.

The light therapy is a simple, non-invasive treatment that delivers concentrated natural light to your skin and cells. Clinical research is showing that red light therapy can improve sleep quality and duration, and help people produce more of their own melatonin.

Light plays a major role in your sleep cycle. The body’s circadian clock interprets light as a sign of when to sleep and when to be awake. Artificial blue light from phones, computers, and other screens is extremely bright and can knock your circadian rhythm out of whack. Red light has the opposite effect: it’s ideal for evenings because it has a low color temperature—far lower than blue light and much closer to the natural sunset.

Red light therapy treatments are quick and simple: you just sit or stand in natural light for 5 to 15 minutes, ideally every day. This stimulates your mitochondria and gives your cells the natural light they need to make energy.

How Does Red Light Therapy Help You Sleep?

Natural light is a key ingredient for a healthy circadian rhythm and restful sleep. If you struggle to sleep, your light intake could be a big factor. Red light therapy delivers natural light like you’d get from the sun, but without UV rays, excess heat, or the need for sunny weather.

Red light therapy treatments supercharge your cells with the natural light they need to make more core ATP (adenosine triphosphate) energy. This helps your body run more efficiently, heal faster, and has shown great results for producing more natural melatonin and improving sleep disorders like insomnia.

Red light therapy treatments have shown great sleep results in a range of peer-reviewed clinical studies. One study on the sleep of pro basketball players showed that a 2-week course of red light therapy in the evening improved players’ sleep quality in the short term. Based on the results, the researchers suggested red light therapy would be a good non-invasive, drug-free solution to sleep struggles.

Overcoming Sleep Disorders with Red Light Therapy

Kaiyan's light therapy products are registered with the FDA as class II medical devices for the treatment of pain, strain, and inflammation. While the existing clinical research has been very positive for red light therapy and sleep, keep in mind that Kaiyan's devices are not cleared with the FDA for the treatment of various sleep disorders or melatonin.

Recent research on sleep disorders among people with migraine headaches has shown that red light therapy both decreased headache frequency, and was the only treatment that improved patients’ sleep disorders.

A 2014 study on cognitive function and traumatic brain injury (TBI) recorded that participants had significantly decreased episodes of post-traumatic stress disorder (PTSD), and improved sleep.

Analyzing patients’ electrical brain activity, a 2013 sleep study concluded that red light therapy was especially effective at helping people with sleep disorders fall asleep.


When I’m indoors training under the buzz of artificial lights, my body doesn’t get the natural light it needs. Add computers, cell phones, televisions, etc. and it’s easy to overload yourself with blue light. I used to have trouble sleeping after long training days, but since adding more natural light to my routine with red light therapy, I’ve been falling asleep as soon as I lie down, and I’ve been staying asleep all night.*

Sanne Wevers

Gold-Medal Winning Dutch Gymnast

Red Light Therapy, Sleep, Depression, and Seasonal Affective Disorder (SAD)

Research is showing how closely mood and sleep disorders are interconnected. Parts of the brain that regulate sleep have also been found to closely affect mood. A 2013 review concluded that “nearly all people suffering from mood disorders have significant disruptions in circadian rhythms and the sleep/wake cycle.”

This Greatist post on natural light and serotonin gives good background on the connections between natural light intake, mental health, and sleep. It also mentions using Kaiyan's red light therapy devices to get more natural light, even when you can’t get more sunlight.

Trouble sleeping is one of the most common symptoms of seasonal affective disorder, a type of depression most common in the darker winter months. Some physicians treating patients with mental health disorders have said red light therapy both improves mood, and helps people with depression get better sleep.

Sources and References:

Morita T., Tokura H. “ Effects of lights of different color temperature on the nocturnal changes in core temperature and melatonin in humans” Journal of Physiological Anthropology. 1996, September

Lirong Z., Phyllis Z. “Circadian Rhythm Sleep Disorders” Neurologic Clinics. 2012, November.

Color Temperature

The State of Sleep Health in America.

Klepeis N., Nelson W., et al. “The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants”. Journal of Exposure Analysis and Environmental Epidemiology 2001.

Sheppard A and Wolffsohn J. “Digital eye strain: prevalence, measurement and amelioration.” BMJ Open Ophthalmology. 2018 April.

Gooley, J., Chamberlain, K., Smith, K., Khalsa, S., et al. “Exposure to Room Light before Bedtime Suppresses Melatonin Onset and Shortens Melatonin Duration in Humans” J Clin Endocrinol Metab. 2011 Mar.

Hamblin M. “Mechanisms and applications of the anti-inflammatory effects of photobiomodulation”. AIMS Biophys. 2017.

Zhao J., Tian Y., Nie J., Xu J., Liu D. “Red light and the sleep quality and endurance performance of Chinese female basketball players” Journal of Athletic Training. 2012, November-December.

Loeb LM, Amorim RP, et al. “Botulinum toxin A (BT-A) versus low-level laser therapy (LLLT) in chronic migraine treatment: a comparison.” Arquivos de neuro-psiquiatria. 2018 Oct;76(10):663-667.

Naeser MA, Zafonte R, et al. “Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study.” Journal of Neurotrauma. 2014 Jun 1;31(11):1008-17.

Wu JH, Chang YC. Effect of low-level laser stimulation on EEG power in normal subjects with closed eyes. Evidence Based Complementary and Alternative Medicine. 2013; 2013:476565.

Vadnie C, and McClung C. Circadian Rhythm Disturbances in Mood Disorders: Insights into the Role of the Suprachiasmatic Nucleus. Neural Plasticity. 2017 November.

McClung C. How might circadian rhythms control mood? Let me count the ways. Biological Psychiatry. 2013 April.

Nutt D, Wilson S, et al. Sleep disorders as core symptoms of depression. Dialogues in Clinical Neuroscience. 2008 September.

Avci P, Gupta A, et al. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Seminars in Cutaneous Medicine and Surgery. Mar 2013.

Top Light Therapy Masks

Due COVID, everyone is obsessed with skin care these days, regular at-home routines have really leveled up, and no skin-care gadget is as intriguing as the LED light-therapy mask.

Celebrities are no longer the only ones who get to wear luminescent masks and haunt the public’s dreams by instagramming their LED selfies. There are now several regular-person versions available online, meaning anyone can harness the power of LED light, the green light for pain relief and slimming, the blue for bacteria-killing and red for collagen- and elastin-stimulating.

In Kaiyan Medical, we can create your FDA cleared light therapy mask based on your needs and market.

Here the top light therapy masks

MZ Skin Light-Therapy Golden Facial Treatment Device


Average price: $625

Buy here

If your skin is temperamental, it’s nice to have a well-rounded, high-performance mask on call. Designed to replicate MZ skin founder Dr. Maryam Zamani’s in-office treatments, it comes with five different light settings (red, blue, green, yellow, and white) so you can focus on anything from inflamed breakouts to the annoying scars and discoloration those pimples sometimes leave in their wake.


DMH Aesthetics Light Shield


Average price: $189

Buy here

Using this mask you can actually see out of it without lines obstructing your view. It’s designed to be very wearable and on-the-go, so you can continue doing whatever you’re doing while treating your skin. The Light Shield allows the wearer to enjoy RED, BLUE, and AMBER LED therapies. Specifically target post-treatment/facial redness with RED light, shown to boost circulation and speed healing

Project E Beauty Wireless LED Light Skin Rejuvenation Therapy Mask


Average price: $200

Buy here

This mask comes with seven different light colors to treat every skin-care issue imaginable on the face. Project E’s mask goes a step further with a bonus attachment for the neck, arguably the most overlooked part of skin-care routines. 99 + 40 LED lights cover your face & neck, upgraded to emit the most optimal wavelengths with 5 levels of intensity.


LG Derma Pra.L Mask


Average price: $480

Buy here

If you’re a K-beauty fan, there’s a Korean LED face mask just for you! This one comes from LG. All that appliance expertise has been channeled into a mask that hits the skin with red and infrared LED light in quick, nine-minute sessions focused on improving skin elasticity and brightness.


Dr. Dennis Gross Skin-Care SpectraLite Faceware Pro


Average price: $435

This LED mask from Dr. Dennis Gross is one of the more fashionable ones on the market. It comes with gold accents, 162 LED lights, and three treatment options to choose from: red-light therapy, blue-light therapy, or red and blue–light therapy.


TOP #1 — ADURO ® 7+1 LED FACE MASK


$399.00

Do you value personal comfort while lurking and skulking? This soft, silicone mask is less hockey goalie and more like an actual face mask that molds to your face shape for a more comfortable treatment. The aduro mask is the most advanced home-use facial mask based on light therapy.

  • 7 LED colors
  • Infra-Red Skin Boosting
  • 11 different treatments
  • 20 minutes
  • Non invasive
  • Clinically proven
  • Slows down the aging process
  • Prevents wrinkles
  • Soothes redness of the skin
  • Clears up skin imperfections
  • Stimulates cell rejuvenation
  • Improves skin tone

More information about Aduro here


Personal LED MASK - Aduro Australia
Personal LED MASK - Aduro Australia
Personal LED MASK - Aduro Australia
Personal LED MASK - Aduro Australia
Personal LED MASK - Aduro Australia

Personal LED MASK - Aduro Australia
Personal LED MASK - Aduro Australia
Personal LED MASK - Aduro Australia


Defeat the Migraine with the Power of the Green Light

What is a Migraine?

Migraine is a neurological condition that can cause multiple symptoms. It’s frequently characterized by intense, debilitating headaches. Symptoms may include nausea, vomiting, difficulty speaking, numbness or tingling, and sensitivity to light and sound. Migraines often run in families and affect all ages.

People describe migraine pain as:

  • Pulsating
  • Throbbing
  • Perforating
  • Pounding
  • Debilitating
Migraine Symptoms

Migraine symptoms may begin one to two days before the headache itself. This is known as the prodrome stage. Symptoms during this stage can include:

  • Food cravings
  • Depression
  • Fatigue or low energy
  • Frequent yawning
  • Hyperactivity
  • Irritability
  • Neck stiffness
LED Green Light: a Novel, Non-Invasive, and Non-Pharmacological Therapy.

The effects of green light on the brain have been researched and well-documented for years. The green light can reset the circadian rhythm through melatonin, the hormone that regulates our sleep-wake cycles. A special photoreceptor system in the human eye picks up light and elicits non-visual responses, sending signals to the brain to reset the body’s internal clock and altering melatonin production levels.

Long-time sufferers of migraines and other chronic pain conditions may benefit from exposure to LED green light. A new study, led by pharmacologist Mohab M. Ibrahim, M.D., Ph.D., found that the color green may be key to easing pain.

Ibrahim’s interest in studying the ameliorating effects of green light was inspired by his brother, who has dealt with severe headaches for several years. Instead of taking ibuprofen, his brother would sit in his garden and soak up the verdure of nature to ease the pain from his headaches.

“I wanted to see what is in his garden or in a garden, in general, that would make headaches better,” said Ibrahim, director of the Chronic Pain Management Clinic at Banner — University Medical Center Tucson.

In his clinical practice, Ibrahim also saw that his patients suffering from migraines and fibromyalgia had limited treatment options, and wanted to find a novel, non-invasive, nonpharmacological therapy.

In his study, which has yet to be published, Ibrahim exposed 25 migraine volunteers first to white lights for two hours as a control, then to green LED lights. He measured multiple parameters, including pain reduction, frequency of migraines or headaches, frequency of fibromyalgia flare-ups, pain intensity and duration, and quality of life.

On a scale of 0 to 10, with 0 indicating no pain and 10 the highest level of pain, migraine volunteers had an initial average baseline pain score of 8. After completing the green light therapy, their score dropped down to an average of 2.8. The frequency of headaches dropped from 19 to 6.5 per month, and the overall quality of life climbed from 48 percent to 78 percent.

“The best part about it … is the simplicity, the affordability and, most importantly, the lack of side effects,” Ibrahim said. “It’s a normal light. We’re not using a high-energy laser or anything like that.”

But if pain works through the nervous system, how exactly can green light, which works through the visual system, make people feel better?

New studies show that there are neuronal connections that span from the retina all the way to the spinal cord, passing through the parts of the brain that control and modulate pain. Green light changes the levels of serotonin and alters the endogenous opioid system, an innate pain-relieving system found throughout the central and peripheral nervous system, gastrointestinal tract, and immune system, said Bing Liao, M.D., a neurologist at Houston Methodist Hospital.

“The endogenous opioid system … allows the body to generate something similar to opioids and gives us a sensation of pain relief and happy feeling,” Liao said. “Research has found that, with green light, the receptors of the endogenous opioid system can increase production in the brain and body, and the hormone by itself can increase in production, as well. … It might be an explanation for why people feel good when they’re in a green environment.”

While more studies must be done to test the efficacy of green light therapy as a treatment for chronic pain, Ibrahim said he is trying to advance this therapy as a complement to current therapies.

“What this green light therapy offers is a non-invasive, non-pharmacological additional tool, so it might help reduce opioids,” he said. “I don’t think it will eliminate opioids, but at least it may reduce it enough. It may provide people just with extra help or extra relief so that they may not need the number of opioids that they’re on.”

References

https://www.tmc.edu/news/2020/02/exposure-to-green-light-may-reduce-pain/

https://www.ncbi.nlm.nih.gov/pubmed/28001756

https://www.ncbi.nlm.nih.gov/pubmed/21182447

https://www.ncbi.nlm.nih.gov/pubmed/23964217

https://www.ncbi.nlm.nih.gov/pubmed/7769534

https://www.ncbi.nlm.nih.gov/pubmed/26989758

https://www.ncbi.nlm.nih.gov/pubmed/15557336

https://www.ncbi.nlm.nih.gov/pubmed/21172691

http://www.sciencedirect.com/science/article/pii/S2214647416300381?via%3Dihub

The Beauty and the Beam: the Magic of the Red Light Therapy.

Skeptical

While I was initially skeptical at the 8-minute treatment, after I started to calm my mind, I fell in love with it. From age spots, to dry skin and acne, it cures whatever ails you. Could sound like a magic potion from a princess but is just light therapy. Before you go with the “What the…?” face, it’s only a matter of time before it shows up in most of the celebrities’ social media.

Most of our users describe it as

“warm and relaxing, and allows you to go into a meditative state of mind.”

LED light therapy has an established history of skin uses. The U.S. Navy SEALs began using it in the 1990s to help heal wounds quickly and to help regenerate damaged muscle tissues.

Since then, the treatment has been researched for different situations in aesthetics. It’s mainly noted for increasing collagen and tissues.

There are different frequencies, or wavelengths, used with LED light treatment. These include red and blue light frequencies, which don’t contain ultraviolet rays and are readily absorbed into the skin.

Light therapy

Different than Daylight

Unlike ultraviolet rays from the sun which damage the DNA of skin cells, “light emitted in this spectrum is perfectly safe,” said Dr. Susan Bard, a board-certified dermatologist based in New York City.

That means there’s no tanning or burning when you’re exposed to red light. Its effects happen deep inside at the cellular level. All living things need to make ATP cellular energy to function and survive, and nearly all living things rely on natural light to power this process in our cells every day. Red and near-infrared wavelengths of natural light stimulate the mitochondria in your cells, the powerhouses responsible for taking light, oxygen, and the food we eat — and turning it into usable energy for our bodies through the process of cellular respiration.

Light therapy

Uses of Red Light

Red light therapy has been used to treat or improve the following:

  • pain
  • inflammation
  • healing
  • tissue regeneration
  • autoimmune diseases
  • brain disorders
  • athletic performance
  • eyesight
  • heating
  • cancer therapy side effects

“The number of conditions red light can treat is ‘continuously expanding”

said Michael R. Hamblin, PhD, a principal investigator at the Wellman Center for Photomedicine at Massachusetts General Hospital and associate professor of dermatology at Harvard Medical School.

The Short Version

Light therapy delivers safe, concentrated wavelengths of natural light to your skin and cells, with no chemicals, UV rays, or excess heat. These red and near-infrared wavelengths of light stimulate the mitochondria in your cells similar to natural sunlight, reducing oxidative stress, and increasing circulation, so your body is able to make more core energy to power itself.

In Kaiyan medical, we believe in the benefits of light. We believe in healing without chemicals. With our lights, we want you to have the best version of yourself.