One Tree Planted x Kaiyan: A Partnership for a Greener Future

With all of the environmental concerns surrounding pollution and climate change, the world is at great uncertainty. The list of issues with respect to the way we treat our environment is an increasingly long one. Eco-systems are being destroyed, making our planet less safely inhabitable for both humans and animals. 

For example, a decade ago, air pollution didn't seem so deadly, yet today, it's one of the most life-threatening problems we face. 

Eco-systems often cause and create their microclimates, and with their disappearance, the earth's climate is corrupted. Draught is more frequent around the world and the infamous temperature rise and warming of the climate. Our carbon footprint can and should be reduced, and even though it may seem difficult, the changes have to start somewhere.

The importance of companies taking charge lies in their global reach. Businesses worldwide are capable of spreading information globally, drawing attention to important matters that could make a vital change in the world. Companies staying aware and taking responsibility for their impact on the environment make us more aware of our responsibility. 

So, what’s our story? 

At Kaiyan we've been producing the highest quality light therapy devices for 15 years. Our products are MDA-certified and FDA-approved. First and foremost, our products are designed to improve our customers' well-being, not through gimmicks but science-backed LED therapy devices. 

Our products focus on bringing back balance into the body, inside and out—the natural way. The best part is light therapy is a non-invasive and long-term solution of helping with various health problems, from the inside out. The type of light therapy colors used offers a wide range of benefits. 

With skin, it works by smoothing it out and helping in the general glowing appearance. With light therapy, collagen production increases, which results in fewer wrinkles and fine lines. It helps with wound healing and scars and also with more serious skin problems such as eczema and psoriasis. 

But light therapy capabilities go beyond skin deep. Light therapy also helps with mental health issues such as depression and sleep disorders. Working the way it does, from within, means it penetrates directly into our cells. This way, our cells are rejuvenated, and ATP production boosted. By better cell reproduction, we have a better and healthier organism. 

Many people also struggle with vitamin D deficiency, which causes muscle and bone pains, alongside extreme fatigue. Vitamin d deficiency light therapy works by substituting the Sun. Where it lacks sunshine, our LED light therapy device helps create serotonin and melanin we’d usually get if there were no lack. 

So the health benefits of color light therapy are many, ranging from surface level problems such as skincare to deeper lever problems such as mental health disorders. Working at the cellular level helps our brain's chemical process, creating a better and healthier balance for our bodies. 

Though our focus is improving the human body, we also want to do our part to protect our planet. Kaiyan’s mission is to help with the environment by bringing balance and wellness to the world. This means creating the best and most effective light therapy products while ensuring the environment is kept in mind. 

Saving the Planet One Tree at a Time

One Tree Planted is a non-profit organization working as an environmental charity. Their mission is to help the environment, and they do so by helping us and providing an easier way for individuals or businesses to get involved. One Tree Planted takes online donations and uses the funds to invest in reforestation.

The organization started its project in 2014, and by 2020 the numbers increased from 50 thousand to 15 million. Creating a healthier climate and better world has never been easier. One Tree Planted puts effort into protecting biodiversity and natural habitats. They work with partners in the Americas, Asia, and Africa. Apart from creating new forests, they also restore forests damaged from floods or fires.  

With each Kaiyan manufacturing order, our clients are given the opportunity to select a location for a tree to be planted in their name. Trees help create more oxygen in the atmosphere, and even purify our air. It's an incredibly worthwhile, and impactful opportunity to do something for our mother earth. At the end of the day, sustainability is something we at Kaiyan are working towards passionately, and with our One Tree Planted Partnership, we're able to get our incredible clients involved in bettering the planet, as well.

Find it interesting? Share it!

One Tree Planted x Kaiyan: A Partnership for a Greener Future

With all of the environmental concerns surrounding pollution and climate change, the world is at great uncertainty. The list of issues with respect to the way we treat our environment is an increasingly long one. Eco-systems are being destroyed, making our planet less safely inhabitable for both humans and animals. 

For example, a decade ago, air pollution didn't seem so deadly, yet today, it's one of the most life-threatening problems we face. 

Eco-systems often cause and create their microclimates, and with their disappearance, the earth's climate is corrupted. Draught is more frequent around the world and the infamous temperature rise and warming of the climate. Our carbon footprint can and should be reduced, and even though it may seem difficult, the changes have to start somewhere.

The importance of companies taking charge lies in their global reach. Businesses worldwide are capable of spreading information globally, drawing attention to important matters that could make a vital change in the world. Companies staying aware and taking responsibility for their impact on the environment make us more aware of our responsibility. 

So, what’s our story? 

At Kaiyan we've been producing the highest quality light therapy devices for 15 years. Our products are MDA-certified and FDA-approved. First and foremost, our products are designed to improve our customers' well-being, not through gimmicks but science-backed LED therapy devices. 

Our products focus on bringing back balance into the body, inside and out—the natural way. The best part is light therapy is a non-invasive and long-term solution of helping with various health problems, from the inside out. The type of light therapy colors used offers a wide range of benefits. 

With skin, it works by smoothing it out and helping in the general glowing appearance. With light therapy, collagen production increases, which results in fewer wrinkles and fine lines. It helps with wound healing and scars and also with more serious skin problems such as eczema and psoriasis. 

But light therapy capabilities go beyond skin deep. Light therapy also helps with mental health issues such as depression and sleep disorders. Working the way it does, from within, means it penetrates directly into our cells. This way, our cells are rejuvenated, and ATP production boosted. By better cell reproduction, we have a better and healthier organism. 

Many people also struggle with vitamin D deficiency, which causes muscle and bone pains, alongside extreme fatigue. Vitamin d deficiency light therapy works by substituting the Sun. Where it lacks sunshine, our LED light therapy device helps create serotonin and melanin we’d usually get if there were no lack. 

So the health benefits of color light therapy are many, ranging from surface level problems such as skincare to deeper lever problems such as mental health disorders. Working at the cellular level helps our brain's chemical process, creating a better and healthier balance for our bodies. 

Though our focus is improving the human body, we also want to do our part to protect our planet. Kaiyan’s mission is to help with the environment by bringing balance and wellness to the world. This means creating the best and most effective light therapy products while ensuring the environment is kept in mind. 

Saving the Planet One Tree at a Time

One Tree Planted is a non-profit organization working as an environmental charity. Their mission is to help the environment, and they do so by helping us and providing an easier way for individuals or businesses to get involved. One Tree Planted takes online donations and uses the funds to invest in reforestation.

The organization started its project in 2014, and by 2020 the numbers increased from 50 thousand to 15 million. Creating a healthier climate and better world has never been easier. One Tree Planted puts effort into protecting biodiversity and natural habitats. They work with partners in the Americas, Asia, and Africa. Apart from creating new forests, they also restore forests damaged from floods or fires.  

With each Kaiyan manufacturing order, our clients are given the opportunity to select a location for a tree to be planted in their name. Trees help create more oxygen in the atmosphere, and even purify our air. It's an incredibly worthwhile, and impactful opportunity to do something for our mother earth. At the end of the day, sustainability is something we at Kaiyan are working towards passionately, and with our One Tree Planted Partnership, we're able to get our incredible clients involved in bettering the planet, as well.

SAD - Seasonal Affective Disorder 101

The first formal description of Seasonal Affective Disorder (SAD), the most well-known psychiatric condition associated with seasonality in humans, was introduced in the mid-1980s by Rosenthal, who described a group of 29 patients living in a temperate climate who experienced depressive episodes characterized by hypersomnia, hyperphagia, and weight gain in the fall or winter, and whose symptoms remitted by the next spring or summer.

SAD was incorporated into the Diagnostic and Statistical Manual (DSM) of Mental Disorders III-R when “seasonal pattern” was introduced as a specifier for Major Depression and Bipolar Disorders. Subsequent revision in DSM-IV described SAD as “a regular temporal relationship between the onset of Major Depressive Episodes in Bipolar I (BPI) or Bipolar II (BPII) Disorder or Major Depressive Disorder (MDD), recurrent, and a particular time of the year.”

Today, SAD, or MDD with seasonal pattern, is defined as recurrent episodes of major depression that meet the following criteria: at least two consecutive years where the onset and offset of depressive symptoms occur at characteristic times with no non-seasonal episodes, a temporal relationship between onset of symptoms and time of year, a temporal relationship between remission of symptoms and time of year, and an outnumbering of seasonal compared to non-seasonal episodes throughout the lifetime of the patient.

Pathophysiology of SAD

To date, the pathophysiology of SAD is unclear. Early research into the mechanism of SAD focused on day length or photoperiod. This hypothesis posited that shorter days in winter, possibly mediated by a longer duration of nocturnal melatonin secretion, leads to depressed mood in susceptible individuals. To date, there is little data to support this hypothesis. Furthermore, given that bright light in the evening has not been as effective as that given in the morning, it now seems unlikely that the photoperiod is the underlying pathological mechanism of SAD.

Although some animal studies have implicated a direct effect of light on the midbrain (Miller, Miller, Obermeyer, Behan, & Benca, 1999; Miller, Obermeyer, Behan, & Benca, 1998), the most prominent hypothesis driving human studies involves disruption of circadian rhythms. Research on the role of serotonin is also active.

Circadian Rhythm

A circadian rhythm refers to the approximately 24-hour cycle of physiological processes present in humans and other animals. This cycle is governed via clock gene expression by the suprachiasmatic nucleus (SCN), the master pacemaker located within the anterior hypothalamus. Though the SCN endogenously generates circadian oscillations, SCN endogenously generates circadian oscillations, and they need to be entrained to the 24-hour day by external cues. Light exposure is the most important synchronizing agent of endogenous circadian rhythms.

Downstream of the SCN, a collection of systemically active neurohumoral networks transduce circadian information to the rest of the body. For instance, via projections to the hypothalamus's paraventricular nucleus, the activation of the SCN leads to autonomic changes, including cardiovascular modulation, and together the central, peripheral, and autonomic nervous systems collaborate to affect systemic changes. Thus, the SCN receives information about the external day-night cycle directly through retinofugal pathways and indirectly through neuromodulatory signaling. Circadian information is then relayed systemically through neurohumoral networks.

The current primary hypothesis for the pathophysiology of SAD, known as the “phase-shift hypothesis,” posits that there is an optimal relationship in the alignment of the sleep-wake cycle and the endogenous circadian rhythm. During the fall and winter, as day length shortens, the circadian rhythm begins to drift later concerning clock time and the sleep-wake cycle. This phase delay is hypothesized to bring about mood symptoms. A pulse of morning bright light generates a circadian phase advance, which is thought to correct the discordance between sleep and circadian phase, thereby ameliorating depressive symptoms. However, the phase-shift hypothesis would predict that the amount of phase correction required for each patient would depend on an individual’s PAD, which has not yet been proven.

Serotonin

Several studies have also proposed that serotonin is implicated in the pathophysiology of SAD, as selective serotonin reuptake inhibitors (SSRIs) appear to be effective in the treatment of SAD. Supporting this hypothesis, one study used Positron Emission Tomography (PET) imaging to look at binding probability at synaptic serotonin transporters in 88 normal individuals living in the temperate climate of Toronto, Canada (Praschak-Rieder, Willeit, Wilson, Houle, & Meyer, 2008). The binding probability was increased during fall and winter compared to warmer months, thus eliciting an inverse correlation between binding potential and sunlight durationsunlight duration. Of note, the largest difference in transporter binding was found in the mesencephalon, a finding consistent with animal studies demonstrating the importance of direct effects of light to the midbrain on behavior. If increased transporter activity indicated greater reuptake of serotonin during the fall/winter, and if this resulted in a lower density of cleft serotonin, then the seasonal variation in transporter activity (i.e., higher transporter efficiency in the winter) would seem to leave susceptible individuals particularly prone to mood symptoms during the darker seasons. Moreover, following BLT and during periods of remission in the summer months, the synaptic transporter activity was shown to be reduced to control levels in these patients.

Eating Disorders

BLT has also been investigated to a lesser extent in eating disorders. Because binge eating episodes have been observed to increase in fall and winter in some patients, BLT has been examined as a treatment modality for anorexia nervosa (AN) and bulimia nervosa (BN). Thus, BLT's effects on patients with eating disorders remain enigmatic. Additional studies, including larger, randomized, blinded, and controlled trials, are needed to elucidate further the role of BLT in treating this patient population. Further research might also determine whether BLT would be a useful treatment in Binge-Eating Disorder, a diagnosis new to DSM-5.

Adult ADHD

Additionally, BLT has been studied in the context of adult Attention-Deficit/Hyperactivity Disorder (ADHD), where, in addition to normal ADHD symptoms, patients often have depressed mood and difficulties falling asleep, awakening on time, and maintaining arousal (Brown & McMullen, 2001). These symptoms are indicative of a possible delay in the circadian rhythm. A case report of symptom improvement following BLT in a child with ADHD who displayed signs of delayed sleep phase also supports the idea that BLT may be useful in treating symptoms of ADHD (Gruber, Grizenko, & Joober, 2007). Whether the pathways that subserve the improvement of mood symptoms in response to BLT are the same pathways that underlie the seemingly beneficial effects of BLT in ADHD remains to be studied. While these results are promising, further studies, preferably in randomized, blinded, and controlled studies will need to be performed.

Finally

A significant immediate reduction of depression scores with light treatment can be identified after 20 minutes and reaches the maximum at 40 minutes, with no additional benefit at 60 minutes. The rate of change is steepest during the first 20 minutes of light as compared with longer intervals. Comparing the clinical impact of these durations of administration may yield different results when measured after several daily sessions. The overnight effect on circadian rhythms and sleep was not assessed in our study and is thought to impact mood regulation in SAD. Larger, prospective, controlled, and hypothesis-driven studies in more naturalistic conditions would be desirable to replicate our study results and our study results and analyze the temporal dynamic of the persistence of the immediate mood-improvement effects. Besides, in larger samples, one could define early responders and nonresponders, analyze genetic (e.g., melanopsin related genes), demographic (children, adolescents, adults, elderly, gender), physiological (e.g., pupillary responses), and clinical (e.g., abundant atypical symptoms) predictors for early response. If proven effective and efficacious, shorter exposures to bright light could become a feasible and broadly employed intervention for immediate mood improvement as an early step on the road toward full antidepressant response and remission.


REFERENCES
  • Al-Karawi D, & Jubair L (2016). Bright light therapy for nonseasonal depression: Metaanalysis of clinical trials. J Affect Disord, 198, 64–71. doi:10.1016/j.jad.2016.03.016 [PubMed] [CrossRef] [Google Scholar]
  • American Psychiatric Association., & American Psychiatric Association. DSM-5 Task Force. (2013). Diagnostic and statistical manual of mental disorders : DSM-5 (5th ed.). Washington, D.C.: American Psychiatric Association. [Google Scholar]
  • American Psychiatric Association., & American Psychiatric Association. Task Force on DSM-IV. (1994). Diagnostic and statistical manual of mental disorders : DSM-IV (4th ed.). Washington, DC: American Psychiatric Association. [Google Scholar]
  • American Psychiatric Association., & American Psychiatric Association. Work Group to Revise DSM-III. (1987). Diagnostic and statistical manual of mental disorders : DSMIII-R (3rd ed.). Washington, DC: American Psychiatric Association. [Google Scholar]
  • Benedetti F, Barbini B, Fulgosi MC, Colombo C, Dallaspezia S, Pontiggia A, & Smeraldi E (2005). Combined total sleep deprivation and light therapy in the treatment of drug-resistant bipolar depression: acute response and long-term remission rates. J Clin Psychiatry, 66(12), 1535–1540. [PubMed] [Google Scholar]
  • Braun DL, Sunday SR, Fornari VM, & Halmi KA (1999). Bright light therapy decreases winter binge frequency in women with bulimia nervosa: a double-blind, placebo-controlled study. Compr Psychiatry, 40(6), 442–448. [PubMed] [Google Scholar]
  • Brown TE, & McMullen WJ Jr. (2001). Attention deficit disorders and sleep/arousal disturbance. Ann N Y Acad Sci, 931, 271–286. [PubMed] [Google Scholar]
  • Center for Environmental Therapeutics. (2016). Retrieved from http://www.cet.org/
  • Colombo C, Lucca A, Benedetti F, Barbini B, Campori E, & Smeraldi E (2000). Total sleep deprivation combined with lithium and light therapy in the treatment of bipolar depression: replication of main effects and interaction. Psychiatry Res, 95(1), 43–53. [PubMed] [Google Scholar]
  • Daansen PJ, & Haffmans J (2010). Reducing symptoms in women with chronic anorexia nervosa. A pilot study on the effects of bright light therapy. Neuro Endocrinol Lett, 31(3), 290–296. [PubMed] [Google Scholar]
  • Dauphinais DR, Rosenthal JZ, Terman M, DiFebo HM, Tuggle C, & Rosenthal NE (2012). Controlled trial of safety and efficacy of bright light therapy vs. negative air ions in patients with bipolar depression. Psychiatry Res, 196(1), 57–61. doi:10.1016/j.psychres.2012.01.015 [PubMed] [CrossRef] [Google Scholar]
  • Deltito JA, Moline M, Pollak C, Martin LY, & Maremmani I (1991). Effects of phototherapy on non-seasonal unipolar and bipolar depressive spectrum disorders. J Affect Disord, 23(4), 231–237. [PubMed] [Google Scholar]
  • Eastman CI, Young MA, Fogg LF, Liu L, & Meaden PM (1998). Bright light treatment of winter depression: a placebo-controlled trial. Arch Gen Psychiatry, 55(10), 883–889. [PubMed] [Google Scholar]

Red Light Therapy & Vitamin D Production


Aside from nutrition and water, we need vitamin D to survive. In fact, almost every living creature on earth needs vitamin D to survive—it’s a crucial vitamin for all species. Vitamin D helps regulate the amount of calcium and phosphate in the body, which are responsible for the health of our muscles, bones, and teeth. 

In addition, Vitamin D fights disease, reduces depression, and aids in weight loss. When we lack vitamin D in our bodies, it can lead to a loss of bone density, which plays a significant role in osteoporosis and fractures. 

Naturally, a lot of our nutrients come from food; however, vitamin D is also produced in our skin’s response to sunlight. It wasn’t given the nickname the “sunshine vitamin” for nothing. Sitting outside (with sunscreen on, of course) can boost vitamin D levels in the body. By doing so, it can regulate moods and reduce depression. 

In one study, scientists found that people with depression who received vitamin D supplements improved their depression symptoms. While vitamin D supplements are an option, it can take between three to four months until you start to notice improvements. That’s a long time to wait, especially if you’re struggling with depression. However, there is a way to increase vitamin D production without having to wait months to improve. 

As we’ve discussed above, you don’t need sunlight for vitamin D production. You can either take vitamin D3 as a supplement, taking months to work, or through red light therapy, receiving quick results. So, how can you increase vitamin D through red light therapy? 

Before we get into it, it’s important to know that contrary to popular belief, not all forms of light can increase vitamin D in the body. The type of light used in light therapy devices is crucial. Natural sunlight contains both “red” and “infrared” light. These are the two forms of light that are needed in light therapy devices to increase vitamin D production in the body. 

Without red and infrared light, nothing is going to happen. These two forms of light have their own unique benefits to the human body. 

In one study published in Scientific Reports, it found that LED lights are more efficient than sunlight at producing vitamin D3 in skin samples. Tyler Kalajian and his team found that skin samples exposed to LED for 0.52 minutes produced more than twice as much vitamin D3 than samples exposed to 32.5 minutes of sunlight.

Another study focused on cystic fibrosis and short bowel syndrome patients who are unable to absorb vitamin D3 through food. The study used UV light to test whether it would affect vitamin D3 production in the patients’ bodies. It was found that the UV lamp emitted UV radiation similar to sunlight, producing Vitamin D3 in the skin. 

What’s amazing about these studies is that aside from showing light therapy’s effectiveness in producing vitamin D, they also prove light therapy is an excellent source of vitamin D during the winter season. 

During the winter, many people suffer from SAD (Seasonal Affective Disorder) and are unable to find a vitamin D source. But, through red light therapy, users are able to increase vitamin D production regardless of whether there’s sun outside or not. Instead of using antidepressants or slow-moving vitamin D supplements, red light therapy is a fast-acting alternative. 

With Kayian Medical’s MDA-certified and FDA-approved red light therapy devices, users can get their lives back and be in control of their health with effective and quick light therapy treatment.


Skincare Professionals: Keep Your Clients Coming Back With Light Therapy Treatments That Work

If there’s one thing both women and men are trying to achieve, it’s turning back the hands of time. This explains why the anti-aging industry is projected to be worth $83.2 billion by 2027. With anti-aging on everyone’s mind, people are looking for the best ways to maintain their youthful glow and complexion. 

That said, many people interested in investing in anti-aging products are looking for non-invasive options that won’t require six weeks of post-surgical recovery time or monthly injections. While invasive options are anti-aging solutions, light therapy is an overlooked and underrated anti-aging therapy treatment in the skincare industry.

How Does Light Therapy Work? 

Light therapy uses varying wavelengths of light, emitting them onto the skin. The light penetrates through the layers of the skin, stimulating cellular regeneration and heals damaged tissues. While highly noted for its effectiveness for collagen production and tissue repair, it’s also ideal for reducing damage from acne, and eliminating wrinkles, inflammation, and age spots.  

While there are various light therapy devices on the market, some are standing out among the rest. Aduro's highly-rated 7+1 facial mask, eyewear, and handheld devices help combat skin imperfections and reduce aging signs. 

Aduro's light therapy uses different color and color combinations to target various skin conditions. In the 7+1 facial mask, each color offers a different treatment:

Red: increases collagen production for fuller and younger looking skin.

Blue: eliminates acne-casuing bacteria and reduces the appearance of acne.

Green: balances the skin’s complexion.

Yellow: reduces redness from inflammation and rosacea.

Orange: revitalizes the skin and adds glow.

Cyan: calms and soothes irritated skin.

Purple: promotes cell rejuvenation.

Infrared: amplifies desired results.

Users can either opt for one specific color or a combination of colors to tackle their skin’s needs.

“I originally purchased it to calm down my acne problem. And I am not getting any younger so all other lights, including wrinkle reducer will be a great help for my skin. The mask isn't heavy to wear. You can wear it while you are meditating, doing sit-down exercises and or other stuff.”

-Sandra G., verified buyer

As most people have more than one skin condition they’d like to treat, light therapy provides an all-in-one treatment for your clients. The 7+1 facial mask is intended for professional use, and gives equal coverage to the entire face. However, for clients looking for spot treatment on specific areas, handheld and eyewear devices can provide targeted treatment to areas with redness, inflammation, and discomfort.

“I purchased this for a recent flare of roceacea I got from using too many ordinary acids on my skin. I stripped the skin barrier and ended up with redness and red spots. I use the green, orange and blue and violet colour each morning for 1 minute each and notice skin evenness and definite reduction in roceacea I also use it after microneedling and it calm the red down.” 

- Sonia M., verified buyer

As more celebrities are turning to light therapy, people are becoming aware of its capabilities as a non-invasive treatment and are looking at light therapy as a solution to their skincare troubles. 

For clients looking for a relaxing facial experience with the added benefits of reducing their skincare imperfections, light therapy is the best solution. Kayian Medical produces medical-grade laser light devices for the skincare industry. All Kayian light therapy devices are MDA-certified and FDA-approved, ensuring your clients' high quality and results. Keep them coming back with skincare therapy that works.

Red Light Therapy and Sun Damage

When summer rolls around, we all head outside, absorbing as many rays as we can. And the proof is in the numbers, with the top five summertime activities being barbeques, going to the beach, attending festivals, going for a hike, and exploring nature. When the sun comes out, people flock to the outdoors with good reason. We need the sun’s rays to survive.

However, many of us go a little overboard. Some lather on tanning oil or skip sunscreen to make sure we receive as much pigmentation as possible. And yes, we need vitamin D, but overexposure leads to sun damage, including sunspots and wrinkles.

However, it doesn’t end there. Neglectful sun exposure can also lead to skin cancer. While the damage has already been done from years of sunbathing and tanning oils, there are ways we can repair sun-damaged skin, reduce wrinkles and sunspots.

It can help repair the sun damage done to our skin and turn back the clock with red light therapy.

What is Sun Damage?

In the end, skin damage comes from overexposure to ultraviolet (UV) light. When we sunbathe, our skin naturally responds to the sun by protecting itself from UV light. What does our body do? Well, it produces melanin, which darkens the skin to reflect the UV light. So your summer tan is actually a defense mechanism. There are a few different types of sun damage to be aware of:

Melasma: It’s an overproduction of melanin that causes brown or gray patches to form on the skin.

Wrinkles: UV light breaks down the collagen and elastin in the skin, losing its firmness and causing wrinkles.

Sunburn: Sunburns are an inflammatory reaction to UV radiation damage to the skin. The body responds by repairing or removing the damaged cells, which results in redness and peeling.

Sun Spots: Overexposure to UV rays causes an increase of melanin production that builds up in clusters, producing dark spots on the skin.

Actinic Keratosis (AK): Causes a scaly patch of skin on the body from overexposure to UV light. This is particularly dangerous as around 10% of actinic keratosis becomes cancerous.

How Red Light Therapy Reverses Sun Damage

If you’re wondering whether sun damage is reversible or not, the answer is yes. Red light therapy uses infrared and red light to enhance the body’s healing process. Red light therapy increases the body’s collagen, elastin, and immune response; it can remove and repair dead or damaged skin cells.

By increasing collagen production, it’ll help smooth and firm the skin, reducing the appearance of fine lines and wrinkles. Besides, red light therapy also protects existing collagen, which helps keep the skin’s elasticity.

However, red light therapy doesn’t only reduce fine lines and wrinkles. It can also help with more serious skin conditions such as actinic keratosis. It can aid in removing actinic keratosis spots from the skin with photosensitizing medication and red light therapy.

Sun damage is the main cause of aging skin and can lead to serious health issues. Naturally, some sun damage forms cannot be treated, especially for those who work consistently outdoors. However, tackling sunspots, wrinkles, sunburns, and actinic keratosis is achievable through red light therapy treatment.

It’s important to point out that while red light therapy does reverse sun damage, it can prevent future damage — but you should always wear a broad-spectrum sunscreen when outdoors and reapply after swimming or sweating.

Reversing past mistakes are possible with light therapy, but we also want to look at the future. Luna’s red light therapy will tackle previous sun damage and rejuvenate the skin, while sunscreen will prevent future damage.

We hope you continue to enjoy the sun’s incredible rays safely while enjoying the incredible skincare results of Lunas light panels.

Lighting the Way Back for Astronauts - Light Therapy & NASA

In 1993, Quantum Devices, Inc. (QDI), of Barneveld, Wisconsin, began developing the HEALS (High Emissivity Aluminiferous Light-emitting Substrate) technology high-intensity, solid-state LED lighting systems for NASA Space Shuttle plant growth experiments. The company evolved out of cooperative efforts with the Wisconsin Center for Space Automation and Robotics (WCSAR) at the University of Wisconsin-Madison — a NASA center for the Commercial Development of Space. Ronald W. Ignatius, QDI’s president, and chairman represented one of WCSAR’s industrial partners at the time. WCSAR was conducting research on light sources for promoting food growth within closed environments where humans would be present for a long duration, such as the Space Shuttle and the International Space Station.

With the support of WCSAR, Ignatius experimented with LEDs, which provide high-energy efficiency and virtually no heat, despite releasing waves of light 10 times brighter than the Sun. Ignatius admits that some scientists involved in the project were skeptical at first, thinking that the idea of using LEDs to promote plant growth was far-fetched. However, the experiments demonstrated that red LED wavelengths could boost the energy metabolism of cells to advance plant growth and photosynthesis. This finding prompted Ignatius to develop a line of LED products that emit the exact wavelength of light that plants use in photosynthesis.

“Our company gives credit to Dr. Ray Bula, the director of WCSAR, for having the foresight to go against the prevailing dogma of the time and design the first plant experiment using monochromatic light to grow lettuce plants,” Ignatius proclaims.

In 1989, Ignatius formed QDI to bring the salt grain-sized LEDs to market. In October 1995, the light sources made their Space Shuttle flight debut on the second U.S. Microgravity Laboratory Spacelab mission (STS-73, Columbia).

Growing

When NASA determined that red LEDs could grow plants in space, Marshall Space Flight Center awarded QDI several Small Business Innovation Research (SBIR) contracts to investigate the broad-spectrum diodes' effectiveness in medical applications. The contracts, issued from 1995 to 1998, focused on increasing energy inside human cells. NASA hoped that the LEDs would yield medical benefits on Earth and stem bone and muscle mass loss in astronauts, which occurs during long periods of weightlessness. (In space, the lack of gravity keeps human cells from growing naturally.) Furthermore, since wounds are slow to heal in a microgravity environment, LED therapy could accelerate healing and keep what would be termed as minor wounds on Earth from becoming mission-catastrophic in space.

In addition to promoting cell growth, the red LEDs are capable of activating light-sensitive, tumor-treating drugs that, when injected intravenously, could destroy cancer cells while leaving surrounding tissue virtually untouched. The technique, approved by the U.S. Food and Drug Administration (FDA) for use in laboratory and human trials, is known as Photodynamic Therapy.

With the SBIR assistance from NASA, QDI set out to alter a surgical probe that could emit long waves of red light to stimulate a Benzoporphyrin-derivative drug called Photofrin, which delivers fewer post-operative side effects than comparable drugs. Ignatius also developed a friendly and successful working relationship with Dr. Harry Whelan, pediatric neurology and director of hyperbaric medicine at the Medical College of Wisconsin in Milwaukee. The two had met after Ignatius came across a newspaper article highlighting Whelan’s ground-breaking brain cancer surgery technique, which uses drugs stimulated by laser lights to accelerate healing. Accordingly, QDI provided more than $1.25 million from its SBIR contracts to support Whelan’s pioneering photobiomodulation research and bring him on board to help improve the surgical probe.

Collectively, Ignatius, Whelan, and researchers from NASA successfully altered the probe for pediatric brain tumors and the prevention of oral mucositis (a common side effect of chemotherapy and radiation treatments) in pediatric bone marrow transplant patients at the Medical College of Wisconsin. In May 1998, a 20-year-old female became the first patient to undergo surgery with the modified probe. The young woman had endured six brain surgeries and chemotherapy and radiation treatments over a span of 10 years, but her aggressive cancer kept coming back. Having exhausted all of her conventional treatment options, she turned to the NASA-sponsored Photodynamic Therapy technology.

During the procedure, surgeons excised as much of the recurring brain tumor as they could then injected the light-activated Photofrin into her bloodstream and inserted the LED probe into the remaining tumor tissue. The probe, which casts long wavelengths that generate less heat and penetrate deeper into tissue than the shorter wavelengths of traditional medical lasers, proved to be both safe and effective, as the tumor never returned, and the patient recovered with no complications. A second operation that took place 3 months later on a male patient was also deemed successful by Whelan and his Medical College of Wisconsin surgeons' team.

FDA-approved clinical trials continued at several other facilities over the next 3 years, including the Roswell Park Cancer Institute in Buffalo, New York; Rush-Presbyterian-St. Luke’s Medical Center in Chicago; and the Instituto de Oncologia Pediatrica in Sao Paulo, Brazil. QDI became recognized as a U.S. Space Foundation “Space Technology Hall of Fame” award recipient in 2000 and a Marshall Space Flight Center “Hallmark of Success” in 2004.

Product Outcome

The positive clinical trial results and continued support from NASA and follow-on research grants from the Defense Advanced Research Projects Agency helped QDI and the Medical College of Wisconsin fully transition space technology into a new, non-invasive medical device. The WARP 10 (Warfighter Accelerated Recovery by Photobiomodulation) is a high-intensity, hand-held, portable LED unit intended for the temporary relief of minor muscle and joint pain, arthritis, stiffness, and muscle spasms. It also promotes the relaxation of muscle tissue and increases local blood circulation. Unlike the surgical probe, the WARP 10 does not require intravenous medicine; instead, the unit can be placed directly on the skin where treatment is to occur.

The WARP 10 was designed to aid armed forces personnel on the front lines with immediate first aid care for minor injuries and pain, thereby improving combat endurance. The “soldier self-care” device produces 80 times more photon energy than a 250-Watt heat lamp, yet it remains cool to the touch. The power advantage reduces the time required for each therapeutic dose and provides for faster multi-dose exposures when needed, without the harmful effects of ultraviolet solar radiation. The U.S. Department of Defense and the U.S. Navy are currently issuing WARP 10 to crews on submarines and Special Forces operations.

QDI has introduced an FDA-approved consumer version sharing the same power and properties of the military model as an alternative to the cost and complications associated with the overuse of non-steroidal anti-inflammatory drugs (NSAIDs) for persistent pain relief. According to a Mayo Clinic study, adverse events associated with the use of NSAIDs are reported more frequently to the FDA than such events associated with any other group of drugs. Furthermore, conservative calculations for the United States estimate that approximately 107,000 patients are hospitalized each year for NSAID-related gastrointestinal complications. At least 16,500 NSAID-related deaths occur annually among arthritis patients alone, according to compiled research.

References

Beauvoit B., Evans S.M., Jenkins T.W., Miller E.E., Chance B., “Contribution of the Mitochondrial Compartment to the OpticalProperties of the Rat Liver: A Theoretical and Practical Approach,” Analytical Biochemistry 226, 167-174 (1995).Beauvoit B., Kitai T., Chance B., “Correlation between the Light Scattering and the Mitochondrial Content of Normal Tissues andTransplantable Rodent Tumors,” Biophysical Journal 67, 2501-25 10 (1994).Chance B., Nioka S., Kent J., McCully K., Fountain M., Greenfield R., Holtom G., “Time-Resolved Spectroscopy of Hemoglobin andMyoglobin in Resting and Ischemic Muscle,” Analytical Biochemistry 174, 698-707 (1988)Conlan M.J., Rapley J.W., Cobb C.M., “Biostimulation of wound healing by low-energy laser irradiation,” J.Clin. Periodont. 23, 492-496 (1996).Eggert H.R., Blazek V., “Optical Properties of Normal Human Brain Tissues In The Spectral Range of 400 to 2500 nm,” Advances inExperimental Medicine & Biology 333, 47-55 (1993).Karu T., “Photochemical Effects Upon the Cornea, Skin and Other Tissues (Photobiology Of Low-Power Laser Effects,” HlthPhysics 56, 69 1-704 (1989).Lubart R., Friedman H., Sinyakov M., Cohen N., Breitbart H., “Changes in Calcium Transport in Mammalian Sperm Mitochondriaand Plasma Membranes Caused by 780 nm Irradiation,” Lasers in Surg & Med 21, 493-499 (1997).Lubart R., Wollman Y., Friedman H., Rochkind S. Laulicht L., “Effects of visible and near-infrared lasers on cell cultures,” Journalof Photochemistry & Photobiology 12(3), 305-3 10 (1992).Salansky N., “Low energy photon therapy for wound healing.” Intnl Med Instr, Canadian Defense Ministry, PersonalCommunication. (1998).Schmidt M.H., Bajic D.M., Reichert K.W. II, Martin T.S., Meyer G.A., Whelan H.T., “Light –emitting diodes as a light source forintra-operative photodynamic therapy.” Neurosurg 38(3), 552-556 (1996).Schmidt M.H., Reichert K.W. II, Ozker K., Meyer G.A., Donohoe D.L., Bajic D.M., Whelan N. T., Whelan H. T., “PreclinicalEvaluation of Benzoporphyrin Derivative Combined with a Light-Emitting Diode Array for Photodynamic Therapy ofBrain Tumors.” Pediatr Neurosurg 30, 225-231 (1999).Whelan H.T., Schmidt M.H., Segura A.D., McAuliffe T.L., Bajic D.M., Murray K.J., Moulder J.E., Strother D.R., Thomas J.P., MeyerG.A., “The role of photodynamic therapy in posterior fossa brain tumors: A pre-clinical study in a canine glioma model.”Journal of Neurosurgery 79(4), 562-8 (1993).5Whelan H.T., Houle J.M., Donohoe D.L., Bajic D.M., Schmidt M.H., Reichert K.W., Weyenberg G.T., Larson D.L., Meyer G.A.,Caviness J.A., “Medical Applications of Space Light-Emitting Diode Technology—Space Station and Beyond.” SpaceTech. & App Int’l Forum 458, 3-15 (1999).Yu W., Naim J.O., Lanzafame R.J., “The Effect Of Laser Irradiation On The Release Of bFGF From 3T3 Fibroblasts.”Photochemistry & Photobiology 59, 167-70 (1994).

Light and the Moon

The moon shines because its surface reflects light from the sun. And even though it sometimes seems to shine very brightly, the moon reflects only between 3 and 12 percent of the sunlight that hits it.

The moon’s perceived brightness from Earth depends on where the moon is in its orbit around the planet. The moon travels once around Earth every 29.5 days, and during its journey, it’s lit from varying angles by the sun.

This moon’s movement around the Earth — and the simultaneous orbiting of Earth around the sun — account for the moon’s different phases (full moon, quarter moon, etc.). At any given point in the moon’s trajectory around the Earth, only half of its surface is facing the sun, and therefore, only half of the moon is lit up. The other half of the surface faces away from the sun and is in shadow.

Now, I took my first moonlight photograph in 1998, using my father’s old Kodak camera. The results were almost invisible, of course. It was pretty clear that I had no idea what I was doing. But I did know that the feeling of being out under the stars was one that I needed to capture somehow, and I had to find a way to go about doing it.

I left the moonlight photography for a while. Some years later, I read that the brightness of moonlight is extremely variable over a range of many stops and that it was nearly impossible to figure out the brightness of a given scene was going to be ahead of time. The brightness of moonlight under clear skies is as easily predictable as is the brightness of sunlight under similar conditions.

Several things cause moonlight brightness to vary. The most obvious is the moon’s phase. The brightness of moonlight varies by approximately a factor of 10 between the quarter phase and full moon, based on a diffuse reflection and the geometry of the positions of the earth, sun, and moon alone. This is about three and a half stops of light, which is substantial. Another factor is the distance between the earth, moon, and sun, which changes due to the earth and lunar orbits not being perfect circles. The distance from the earth to the sun varies from 0.9833 Astronomical Units at perihelion to 1.0167 Astronomical Units at aphelion. The earth’s distance to the moon varies from 356,400 kilometers at extreme perigee to 407000 kilometers at extreme apogee. The amount of light that falls on a body varies with the inverse square of the distance from the light source, so the combined effect of these distance variations can be quite pronounced. The range of lunar illumination variation is 6.9% for variation in sun distance and 30% for moon distance variation. This amounts to about one-third stop of brightness, which enough to change the mood of a photo when slide films are used.

The third factor in moonlight brightness is the so-called opposition effect. The surface of the moon is covered with small glassy particles that can serve as wonderful retro-reflectors. If you are within a small angle to the line between the sun and moon, the amount of light coming from the moon increases dramatically relative to what you would expect from a diffuse reflection alone. There is quite a range in the magnitude of this effect presented in scientific literature, ranging from a factor of 1.35 to 20! Whatever value you choose to use, the effect is at least one-third stop of light, making it significant to use slide film.

The final parameter that introduces variation into moonlight brightness is atmospheric attenuation, or atmospheric extinction, to use astronomer’s jargon. This accounts for the amount of light absorbed or scattered when light from the moon passes through the earth’s atmosphere. There are two factors involved: the amount of reduction per a given amount of air transited by the light (the “extinction coefficient”) and the amount of air in the light path (“air mass”). Three principal phenomena contribute to the extinction coefficient: molecular absorption, molecular (Rayleigh) scattering, and aerosols’ scattering (particles larger than molecules). See my web page on atmospheric attenuation for more on these individual factors. Overall, an extinction coefficient value is small for dry, clear air but can be huge for moist, dusty air. And the amount of air the light passes through can vary from one “air mass” with the moon directly above you to forty “air masses” when the moon is on the horizon.

So how bright can moonlight be? The brightest moonlight occurs with the moon at perigee and the earth at perihelion, right at the full moon phase. You can never have the moon at its theoretically fullest phase, right opposite the earth from the sun, because whenever the moon goes there, it enters the earth’s shadow, and we get a lunar eclipse! But assuming the eclipse didn’t happen, we could assume the following: a phase angle of zero, apparent air with an “extinction coefficient” of 0.11 magnitudes per air mass, the moon on the zenith so that the moonlight passes through a single “air mass,” the brightness would be 0.0462-foot-candles (LV -2.0), neglecting “the opposition effect.” If we include “the opposition effect,” the brightness could be anywhere from 35% to 20 times brighter (note that 35% is the more accepted value in the scientific literature, which would give an LV of -1.7). I once measured moonlight brightness with a Gossen Luna-Pro incident light meter in mid-winter on the Kelso Dunes at LV=-2.2, so this is a believable result.

There is a rule of thumb, sometimes called the Looney 11 Rule, which says we should treat the moon as being 250,000 times dimmer than the sun. This would have us use a shutter speed 18 stops slower than the 1/(film speed) value that is used in the “Sunny 16 Rule”, which works out to about 44 minutes at f/16 under moonlight conditions with the film having an ISO speed rating of 100 (uncorrected for reciprocity failure!). This is close enough to be useful under full moonlight conditions given an average earth-moon and earth-sun distance, with the moon high in the sky and clear air. Actually, since the sun has an astronomical visual magnitude of -26.74 and the full moon an astronomical visual magnitude of -12.73, the sun is more like 402,000 times brighter than the moon 18.6 stops. Thus using this rule pretty much ensures a minimum of 2/3 stop underexposure — which may actually be fine, since most of the time you want an underexposure to give the impression of the night in the image.

Surprisingly, the moonlight is actually a slightly warmer color than sunlight, as the moon reflectance is higher for longer wavelengths. Yet, on clear nights, with the full moon high in the sky (as little atmospheric influence as possible), the landscape around us appears blueish because of the Purkinje effect: at low illumination levels, our red color sensitivity decreases (as our vision system gradually switches from daylight (cones) to night time vision (using rod cells)).

That’s why the sunlight looks “warm” (more yellow), and the moonlight looks “cold” (bluer — because the insufficient light level changes our color perception), even though the real colors are pretty much the same.

In fact, this is can even become a real problem when taking very long exposure photos at night! They look almost like daylight photos, destroying the intended atmosphere of mystery. Objectively, the photograph is correct, but it is not what we see with our own eyes. Add some blue tint and the night feeling is back.

References

The Sun and Us

Nothing is more important to us on Earth than the Sun. Without the Sun’s heat and light, the Earth would be a lifeless ball of ice-coated rock. The Sun warms our seas, stirs our atmosphere, generates our weather patterns, and gives energy to the growing green plants that provide the food and oxygen for life on Earth.

We know the Sun through its heat and light, but other, less obvious aspects of the Sun affect Earth and society. Energetic atomic particles and X-rays from solar flares and other disturbances on the Sun often affect radio waves traveling the Earth’s ionosphere, causing interference and even blackouts of long-distance radio communications. Disturbances of the Earth’s magnetic field by solar phenomena sometimes induce huge voltage fluctuations in power lines, threatening to blackout cities. Even such seemingly unrelated activities as the flight of homing pigeons, transatlantic cable traffic, and the control of oil flow in the Alaska pipeline apparently are interfered with by magnetic disturbances caused by events on the Sun. Thus, understanding these changes — and the solar events that cause them — is important for scientific, social, and economic reasons.

We have long recognized the importance of the Sun and watched it closely. Primitive people worshiped the Sun and were afraid when it would disappear during an eclipse. Since the early seventeenth century, scientists have studied it with telescopes, analyzing the light and heat that manage to penetrate our absorbing, turbulent atmosphere. Finally, we have launched solar instruments and ourselves-into space to view the Sun and its awesome eruptions in every aspect.

Once we looked at the Sun by the visible light that reached the ground, it seemed an average, rather stable star. It was not exactly constant, but it seemed to vary in a fairly regular fashion, with a cycle of sunspots that comes and goes in about eleven years. Now the Space Age has given us an entirely different picture of the Sun. We have seen the Sun in other forms of light-ultra violet, X-rays, and gamma rays that never reach the ground from space. This radiation turns out to be far more responsive to flare eruptions and other so-called solar activity.

We now see the Sun as a place of violent disturbances, with wild and sudden movements above and below its visible surface. Besides, solar activity's influence seems to extend to much greater distances than we had believed possible. New studies of long series of historical records reveal that the Sun has varied in the past in strange and unexplained ways. Scientists wonder how such variations might affect the future climate on Earth.

We have obtained a clearer picture of the scope of the Sun’s effects. Its magnetic field stretches through interplanetary space to the outer limits of the solar system. Steady streams and intense storms of atomic particles blow outward from the Sun, often encountering our Earth's atmospheres and the other planets. The spectacular photos of the Earth from space show only part of the picture. Instruments carried on satellites reveal a wide variety of invisible phenomena — lines of magnetic force, atomic particles, electric currents, and a huge geocorona of hydrogen atoms — surrounding the Earth. Each is as complex and changing as the visible face of the globe. The Earth’s magnetic field extends tens of thousands of miles into space, and many different streams of electrons and protons circulate within it. Huge electric currents flow around the Earth, affecting their high-altitude surroundings as well as our environment at ground level.

Space observations have greatly expanded our ability to look at the Sun, interplanetary space, and the Earth's immediate surroundings. We can now “see” many phenomena that are completely undetectable from the Earth’s surface, and we now have a much better, more complete, and more coherent picture of how events in one part of our solar system relate to activity in another.

The Sun as a Star

We sometimes forget that there is one star that is easily visible in the day time: our Sun. The Sun is the only star close enough to be studied in detail, but we are confident that all the processes in the Sun must also occur in billions of distant stars throughout the universe. To understand the nature and behavior of other stars, we must first understand our own. At the same time, observations of other kinds of stars help put the Sun in perspective.

The Sun is a relatively typical star among the approximately 100 billion stars in our Milky Way galaxy. The masses of most other stars that we see range from approximately one-tenth of the mass of the Sun to about 30 solar masses. The surface temperatures of most stars range from about 2000° C to 40,000° C. Although the Sun is somewhat on the cool side at about 6000° C, hot stars are rare, and most normal stars are cooler than the Sun. Compared to some of the explosive stars — novae, and supernovae — which sometimes appear in the sky, the Sun is stable and ordinary.

This long-term stability of our Sun probably was crucial for the development of life on Earth. Biologists believe that a relatively stable average temperature had to prevail on Earth during the past 3 billion years for life to evolve to its present state. The relative stability of the Sun is also important to astronomers trying to understand the basic nature of it and other stars. Violent activity in the Sun could mask the more subtle and long-enduring processes, which are the basic energy transport mechanisms of our star. Fortunately, they are not hidden, and we have been able to map the trend in solar properties with height above the visible surface.

Above the minimum temperature region in the photosphere, we have measured how the gas gets hotter as it thins out with height. The chromosphere and corona, each hotter than the layer below, are warmed by the transfer of energy from below through processes that are still not well understood.

Until space observations became possible, we knew nothing about coronae in any other stars and had only marginal information about stellar chromospheres' properties. Now, space observations have shown us that a large fraction of the stars in the sky have chromospheres and coronae.

On several dozen stars, we have even detected activity that may be connected with sunspot (or “starspot”) cycles like those of our own Sun. X-ray telescopes carried on satellites have recorded flares in other stars that are far more powerful than the already impressive flares of the Sun. By observing the strength and frequency of these events on stars with masses, ages, and rotation rates which differ from those of the Sun, we search for answers to such basic questions as: “How does the sunspot cycle period depend on the star’s rotation rate?” or “What is the relation between the temperature of a star’s corona and the strength of its magnetic field?” By deciphering the general pattern of stellar properties, we can better understand what makes things happen on the Sun.

The Sun presents us with a bewildering variety of surface features, atmospheric structures, and active phenomena. Sunspots come and go. The entire Sun shakes and oscillates in several different ways at the same time. Great eruptions called prominences hang high above the Sun’s surface for weeks, suspended by magnetic force, and sometimes shoot abruptly into space from the corona. The explosions called solar flares emit vast amounts of radiation and atomic particles in short periods of time, often with little or no warning.

Space observations have discovered many new aspects of solar events hidden from ground-based observatories—the Sunshine's hottest spots primarily in ultraviolet and X-rays, rather than in visible light. Thus, only from space can we map high-temperature solar flares' true structure and determine their physical conditions. Space observatories have shown us the higher, hotter layers of the Sun’s atmosphere that normally are invisible from the ground. Instruments on satellites revealed that in flares and other violent disturbances, the Sun acts like an atomic accelerator, driving electrons and protons to velocities approaching the speed of light. At such high speeds, the particles emit the high-energy X-rays and gamma rays measured by our satellites. Sometimes they even induce nuclear reactions on the surface of the Sun.

Two aspects of our improved knowledge of the Sun deserve special attention. One is the role of magnetic fields in determining virtually all aspects of the Sun’s upper atmosphere's structure and behavior. The other is discovering the solar wind, a stream of atomic particles that constantly evaporate from the Sun’s atmosphere and are accelerated to speeds of hundreds of kilometers per second, escaping into space in all directions.

The Earth-Sun Battle

For any solar particle to reach the Earth, it must first pass through the Earth’s magnetic field. Before the solar wind was discovered, the Earth’s field was thought to be symmetrical, resembling a huge bar magnet, fading off indefinitely into space. However, we now know that the solar wind shapes the Earth’s magnetic field's outer regions and is sharply bounded. Outside the boundary, space is dominated by the solar wind and the interplanetary magnetic field. Inside the boundary is the region or magnetosphere dominated by the Earth’s magnetic field. The measurements from many space missions have been combined to reveal that the solar wind blows out the Earth’s magnetosphere into a teardrop shape. The head of the drop extends only about 10 Earth radii, or about 65,000 kilometers (40,000 miles) “upwind” toward the Sun. The tail of the drop stretches away in the direction opposite the Sun, actually reaching beyond the Moon’s orbit. This long magnetotail extends more than 600,000 kilometers (370,000 miles) from the Earth.

At the boundary of the magnetosphere, there is a constant struggle between the Earth's magnetic field and the forces of the Sun. Buffeted by fluctuations in the solar wind velocity and density, the magnetosphere’s size and shape are continuously changing. When the solar wind strikes the magnetosphere, shock waveforms are analogous to the sonic boom preceding a supersonic airplane. Inside the boundary with the solar wind, the magnetosphere remains an active region. It contains two belts of very energetic charged atomic particles trapped in the Earth’s magnetic field hundreds of miles above the atmosphere. These belts were discovered by Professor James Van Allen of the University of Iowa and his colleagues in 1958, using simple radiation detectors carried by Explorer 1, the first U.S. satellite.

The Northern and Southern Lights: Gifts from the Sun

The structure of the Earth’s magnetosphere also controls aurorae's behavior, seen in our night skies. Pre-Space Age textbooks stated that aurorae are produced by photons emitted from the Sun and reach the Earth’s upper atmosphere through gaps in the Earth’s magnetic field at the north and south magnetic poles. According to the theory, these protons strike oxygen atoms in the atmosphere, and the collisions cause the glow, which we call the Northern Lights.

This view has changed in the Space Age. The data collected by many spacecraft showed that the situation is more complicated. Particles from both the solar wind and from the Earth’s atmosphere apparently are stored in the magnetotail. From there, they periodically are violently ejected into the northern and southern polar regions of the atmosphere along the Earth’s magnetic field. They are accelerated to high speeds by a process not yet fully explained. The magnetotail is, in effect, a reservoir of particles that is periodically refilled. When the Sun is active during maximum sunspot years, this process is especially intense and frequent, and the aurorae are brighter and move closer to the equator.

Popular Edible Beauty Brands

Recherché Skincare

https://www.rechercheskincare.com/edible-skincare

Dr. Bronner’s Pure Castile Soap

https://shop.drbronner.com/

Olive And M

https://oliveandm.com/

Earth Therapeutics Tea Tree Oil Cooling Foot Scrub

https://www.earththerapeutics.com/

Sukin Naturals: Purifying Facial Mask

https://sukinnaturals.com.au/

Juice Beauty

https://juicebeauty.com/products/hydrating-mist

Annmarie Gianni: Anti-Aging Facial Oil

https://shop.annmariegianni.com/products/anti-aging-facial-oil-15ml?clickId=3327424048&utm_campaign=21181&utm_medium=affiliate&utm_source=pepperjam

Kora organics

https://koraorganics.com/collections/natural-beauty

Elique Organics

https://eliqueorganics.com/

Arbonne

https://www.arbonne.com/pws/DeejaDean/tabs/home.aspx

EdenSong Organics Bodalicious Butta

https://www.edensongskincare.com/store/p17/Bodalicious_Butta'.html#axzz3VdCbo3x7

The Milana Co

https://themilanaco.com/pages/skincare

Edible beauty Australia

https://ediblebeautyaustralia.com/collections/all

The Body Deli

https://www.thebodydeli.com/

Youth to the people

https://www.youthtothepeople.com/

TonyMoly

https://tonymoly.us/collections/sets

Yes To

https://yesto.com/

100 percent pure

https://www.100percentpure.com/

Kinohimintsu

https://www.kinohimitsu.com/en/index.php/beauty/bb-drink

Peach and lily

https://www.peachandlily.com/products/egg-white-bubble-cleanser

Loli Beauty

https://lolibeauty.com/

RMS beauty

https://www.rmsbeauty.com/

Bite beauty

https://www.bitebeauty.com/

The coco kind

https://www.cocokind.com/products/organic-ultra-chlorophyll-mask

The beauty Chef

https://thebeautychef.com

Welle co

https://www.welleco.com.au/

Cilk Rose

https://www.cilkrosewater.com/

The nue co

https://www.thenueco.com/

Orchard Street

https://orchardstreet.com.au/

Honest Beauty

https://www.honest.com/beauty-products

Sephora

https://www.sephora.com/brand/edible-beauty

Sakara

https://www.sakara.com/products/beauty-chocolates

The real coconut

https://therealcoconut.com/

Putting the Light on Psoriasis

Psoriasis is an autoimmune inflammatory skin disease where the skin cells build up and form scales and itchy, dry patches over the surface. It is a misunderstood skin condition. The misbelief is that it not treatable and affects a particular gender or at a certain age. However, it can affect both men and women equally, and more than 5 million adults deal with this skin disorder — which is about 2% of the U.S. population.

Another common misconception is that it is contagious and can spread from one person to another. Well, Psoriasis is an immune system problem in which your immune system does not work as it should normally do.

Light Therapy: The Advanced Way

With some options available for Psoriasis, light therapy is one of the oldest, safest, effective, convenient, and highly preferred treatment by dermatologists. It has been widely used to treat stable psoriatic lesions, including different parts like the trunk, scalp, arms, and legs, and partial nail psoriasis. The treatment of light therapy is available in a variety of light with different mechanisms of action. Based on the bandwidths, the varied versions includes ultraviolet B (UVB), psoralen ultraviolet A (PUVA), pulsed dye laser (PDL), photodynamic therapy (PDT), intense pulsed light (IPL), light-emitting diodes (LED), etc.

How it Works

Light therapy has a very long history of dermatological benefits. Psoriasis happens when the skin cells there is an abnormal production of skin cells. Light therapy works by slowing down the excessive production of skin cells on the epidermis layer. This reduces plaque formation. It also reduces inflammation and limits the growth of skin cells by affecting the functioning of the DNA.

Many clinical studies and researches have displayed positive and effective result in the treatment of various types of Psoriasis like –

  • Small areas of stubborn, thick plaque psoriasis
  • Palmoplantar psoriasis (on hands and feet)
  • Nail psoriasis
  • Scalp psoriasis

Why do Dermatologists Prescribe Light Therapy?

Light therapy treatment can:

  • Slow down the growth of abundant skin cells
  • Repress the functioning of an overly active immune system
  • Reduce inflammation and allow the skin to heal itself
  • Reduce or eliminate the dry and itchiness

Light Therapy Mechanism

Light therapy can be delivered on any affected skin areas such as the hands or scalp, or across their whole body. But proper care and protection are given to the skin areas, such as the eyes and genitals, before treatment.

The treatment doesn’t work in on-go. Several sessions are required as the effect is gradually seen in patients. The treatment requires multiple sessions where the amount of light is gradually increased per session. The light exposure is not instant and varies for a different duration depending on the skin condition severity.

The sessions give proper time to heal the skin. Usually, the sessions go from two to three months. We need to understand the fact that every person’s skin reacts to light therapy differently. Hence, how much improvement one sees in their psoriasis symptoms and how long those benefits last depends totally on their system.

Now the time has changed, and technology has brought more convenience in getting the treatment. Kaiyan Medical provides you numerous products that you can use at your home and enjoy your daily activities without getting disturbed. Break the old and mainstream treatments and adopt effective light therapy to let your skin and life heal completely!

References:

The Sleeping Beauty Secret: The Red Light Therapy

Lack of sleep is a villain in America and Europe. Light intake is a big part of the problem. Over 65% of adults say they don’t get enough good sleep every week. Most people also don’t get nearly enough natural light for optimal health: the average American spends over 90% of their time indoors.

In addition to not getting enough natural light, people today are surrounded by artificial blue light from screens and overhead lighting. An overload of artificial blue light can cause headaches and make it harder to get to sleep and stay asleep. When we take in all that bright blue light from laptops, TVs, and phones, especially before we go to bed, our bodies get the signal that it's time to be awake, even if we're tired.

Melatonin is the naturally-occurring hormone that regulates sleep and wakefulness. Emerging research is showing that red light therapy treatments can help people produce more of their own, natural melatonin than exposure to other light sources like blue light. Red light therapy is natural light. It’s much less bright than blue light, with a lower color temperature than daytime sun, as the image above shows. Research has shown that red light doesn’t upset your sleep cycle like bright blue light. Red light therapy is showing great clinical results for people with insomnia and sleep disorders.

The light therapy is a simple, non-invasive treatment that delivers concentrated natural light to your skin and cells. Clinical research is showing that red light therapy can improve sleep quality and duration, and help people produce more of their own melatonin.

Light plays a major role in your sleep cycle. The body’s circadian clock interprets light as a sign of when to sleep and when to be awake. Artificial blue light from phones, computers, and other screens is extremely bright and can knock your circadian rhythm out of whack. Red light has the opposite effect: it’s ideal for evenings because it has a low color temperature—far lower than blue light and much closer to the natural sunset.

Red light therapy treatments are quick and simple: you just sit or stand in natural light for 5 to 15 minutes, ideally every day. This stimulates your mitochondria and gives your cells the natural light they need to make energy.

How Does Red Light Therapy Help You Sleep?

Natural light is a key ingredient for a healthy circadian rhythm and restful sleep. If you struggle to sleep, your light intake could be a big factor. Red light therapy delivers natural light like you’d get from the sun, but without UV rays, excess heat, or the need for sunny weather.

Red light therapy treatments supercharge your cells with the natural light they need to make more core ATP (adenosine triphosphate) energy. This helps your body run more efficiently, heal faster, and has shown great results for producing more natural melatonin and improving sleep disorders like insomnia.

Red light therapy treatments have shown great sleep results in a range of peer-reviewed clinical studies. One study on the sleep of pro basketball players showed that a 2-week course of red light therapy in the evening improved players’ sleep quality in the short term. Based on the results, the researchers suggested red light therapy would be a good non-invasive, drug-free solution to sleep struggles.

Overcoming Sleep Disorders with Red Light Therapy

Kaiyan's light therapy products are registered with the FDA as class II medical devices for the treatment of pain, strain, and inflammation. While the existing clinical research has been very positive for red light therapy and sleep, keep in mind that Kaiyan's devices are not cleared with the FDA for the treatment of various sleep disorders or melatonin.

Recent research on sleep disorders among people with migraine headaches has shown that red light therapy both decreased headache frequency, and was the only treatment that improved patients’ sleep disorders.

A 2014 study on cognitive function and traumatic brain injury (TBI) recorded that participants had significantly decreased episodes of post-traumatic stress disorder (PTSD), and improved sleep.

Analyzing patients’ electrical brain activity, a 2013 sleep study concluded that red light therapy was especially effective at helping people with sleep disorders fall asleep.


When I’m indoors training under the buzz of artificial lights, my body doesn’t get the natural light it needs. Add computers, cell phones, televisions, etc. and it’s easy to overload yourself with blue light. I used to have trouble sleeping after long training days, but since adding more natural light to my routine with red light therapy, I’ve been falling asleep as soon as I lie down, and I’ve been staying asleep all night.*

Sanne Wevers

Gold-Medal Winning Dutch Gymnast

Red Light Therapy, Sleep, Depression, and Seasonal Affective Disorder (SAD)

Research is showing how closely mood and sleep disorders are interconnected. Parts of the brain that regulate sleep have also been found to closely affect mood. A 2013 review concluded that “nearly all people suffering from mood disorders have significant disruptions in circadian rhythms and the sleep/wake cycle.”

This Greatist post on natural light and serotonin gives good background on the connections between natural light intake, mental health, and sleep. It also mentions using Kaiyan's red light therapy devices to get more natural light, even when you can’t get more sunlight.

Trouble sleeping is one of the most common symptoms of seasonal affective disorder, a type of depression most common in the darker winter months. Some physicians treating patients with mental health disorders have said red light therapy both improves mood, and helps people with depression get better sleep.

Sources and References:

Morita T., Tokura H. “ Effects of lights of different color temperature on the nocturnal changes in core temperature and melatonin in humans” Journal of Physiological Anthropology. 1996, September

Lirong Z., Phyllis Z. “Circadian Rhythm Sleep Disorders” Neurologic Clinics. 2012, November.

Color Temperature

The State of Sleep Health in America.

Klepeis N., Nelson W., et al. “The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants”. Journal of Exposure Analysis and Environmental Epidemiology 2001.

Sheppard A and Wolffsohn J. “Digital eye strain: prevalence, measurement and amelioration.” BMJ Open Ophthalmology. 2018 April.

Gooley, J., Chamberlain, K., Smith, K., Khalsa, S., et al. “Exposure to Room Light before Bedtime Suppresses Melatonin Onset and Shortens Melatonin Duration in Humans” J Clin Endocrinol Metab. 2011 Mar.

Hamblin M. “Mechanisms and applications of the anti-inflammatory effects of photobiomodulation”. AIMS Biophys. 2017.

Zhao J., Tian Y., Nie J., Xu J., Liu D. “Red light and the sleep quality and endurance performance of Chinese female basketball players” Journal of Athletic Training. 2012, November-December.

Loeb LM, Amorim RP, et al. “Botulinum toxin A (BT-A) versus low-level laser therapy (LLLT) in chronic migraine treatment: a comparison.” Arquivos de neuro-psiquiatria. 2018 Oct;76(10):663-667.

Naeser MA, Zafonte R, et al. “Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study.” Journal of Neurotrauma. 2014 Jun 1;31(11):1008-17.

Wu JH, Chang YC. Effect of low-level laser stimulation on EEG power in normal subjects with closed eyes. Evidence Based Complementary and Alternative Medicine. 2013; 2013:476565.

Vadnie C, and McClung C. Circadian Rhythm Disturbances in Mood Disorders: Insights into the Role of the Suprachiasmatic Nucleus. Neural Plasticity. 2017 November.

McClung C. How might circadian rhythms control mood? Let me count the ways. Biological Psychiatry. 2013 April.

Nutt D, Wilson S, et al. Sleep disorders as core symptoms of depression. Dialogues in Clinical Neuroscience. 2008 September.

Avci P, Gupta A, et al. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Seminars in Cutaneous Medicine and Surgery. Mar 2013.

Which is the Vitamin that is not Normally Found in any Vegetarian Food? — Vitamin D

What would happen if you don’t get enough sun?

Which is the vitamin that is not normally found in any vegetarian food? Vitamin D.

Scientists have defined vitamins as organic (carbon-containing) chemicals that must be obtained from dietary sources because they are not produced by our bodies. Vitamins play a crucial role in our body’s metabolism, but only tiny amounts are needed to fill that role.

The discovery of Vitamin D was the culmination of a long search for a way to cure rickets in the 1920s, a painful childhood bone disease. Within a decade, the fortification of foods with vitamin D was on the way, and rickets became rare in the United States. However, research results suggest that vitamin D may have a role in other aspects of human health.

Vitamin Dit’s absent from all-natural foods except for fish and egg yolks, and even when it’s obtained from foods, it must be transformed by the body before it can do any good. That’s why the energy of the Sun is so important.

The sun’s energy turns a chemical in your skin into vitamin D3, which is carried to your liver and then your kidneys to transform it into active vitamin D.

The main cause of vitamin D deficiency is a lack of direct sunlight.
The main cause of vitamin D deficiency is a lack of direct sunlight

Humans, day by day, spend less time outdoors. Most people work indoors now, and many of our leisure pursuits occur in an indoor setting as well. What’s more, when we are outside, many people avoid the sun as much as possible. The result is the body not absorbing enough UVB rays to create the amount of vitamin D it requires. Often, symptoms of vitamin D deficiency are quite mild. When noticed, they mainly consist of:

  • Bone pain.
  • Chronic fatigue.
  • Frequent bone fractures.
  • Muddled thought processes.
  • Muscle weakness.
  • Soft or deformed bones.

Though you may not notice any symptoms, that doesn’t mean that vitamin D deficiency doesn’t present serious health risks. These include:

  • Children may develop severe asthma.
  • Immune system problems, raising your risk of infection.
  • Insulin resistance, impacting your body’s ability to process sugar and increasing your risk of diabetes, multiple sclerosis, and glucose intolerance.
  • Osteoporosis, a condition that includes brittle bones that are more likely to fracture.
  • Reduced cognitive function.
  • Rickets, a bone disease that causes soft bones and skeletal deformities.
Other conditions that would happen without enough sunlight

Less chance of having a baby

Without sunlight, there will be more melatonin in a woman’s body. This is a hormone that suppresses fertility, thereby reducing her chances of conceiving a baby. Moreover, women who get less sunlight reach their menopause earlier than those who are exposed to the Sun. Men can also suffer from a lack of sunlight; it directly influences testosterone levels.

Less chance of having a baby

Raw nerves

It’s believed that if children don’t get enough sunlight, they’ll be more at risk of developing multiple sclerosis, a disease of the central nervous system when they become adults.

All those aches and pains

Without sunlight, be prepared to get more pains all over your body. Sunlight helps to warm the body’s muscles and reduce the pain caused by inflammatory conditions such as arthritis.

No sunny emotions

Image for post

Without sunlight, we would be forever stuck with the seasonal affective disorder (SAD), commonly known as the winter blues. It’s a form of depression that is specifically caused by a lack of sunlight. Artificial light cannot fully replace natural sunlight.

Recent evidence suggests that vitamin D may help prevent many disorders, such as diabetes, multiple sclerosis, rheumatoid arthritis, chronic obstructive pulmonary disease, asthma, bronchitis, premenstrual syndrome, increased blood pressure, strokes and heart attacks, and even cancer. Low serum vitamin D levels are also associated with being overweight, abdominal obesity, metabolic syndrome, stroke, and diabetes. In addition, having lower blood vitamin D levels for a long period is associated with increased heart attacks and all-cause mortality.

In Kaiyan medical, we believe in the benefits of light. We believe in healing without chemicals. With our lights, we want you to have the best version of yourself. More at kaiyanmedical.com

References:

Holick MF (March 2006). “High prevalence of vitamin D inadequacy and implications for health”. Mayo Clinic Proceedings. 81 (3): 353–73. doi:10.4065/81.3.353. PMID 16529140.

Holick MF (December 2004). “Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease”. The American Journal of Clinical Nutrition. 80 (6 Suppl): 1678S–88S. doi:10.1093/ajcn/80.6.1678S. PMID 15585788.

Weick MT (November 1967). “A history of rickets in the United States”. The American Journal of Clinical Nutrition. 20 (11): 1234–41. doi:10.1093/ajcn/20.11.1234. PMID 4862158.

Aghajafari F, Nagulesapillai T, Ronksley PE, Tough SC, O’Beirne M, Rabi DM (March 2013). “Association between maternal serum 25-hydroxyvitamin D level and pregnancy and neonatal outcomes: systematic review and meta-analysis of observational studies”. BMJ. 346: f1169. doi:10.1136/bmj.f1169. PMID 23533188.

Palacios C, De-Regil LM, Lombardo LK, Peña-Rosas JP (November 2016). “Vitamin D supplementation during pregnancy: Updated meta-analysis on maternal outcomes”. The Journal of Steroid Biochemistry and Molecular Biology. 164: 148–155. doi:10.1016/j.jsbmb.2016.02.008. PMC 5357731. PMID 26877200.

Roth DE, Leung M, Mesfin E, Qamar H, Watterworth J, Papp E (November 2017). “Vitamin D supplementation during pregnancy: state of the evidence from a systematic review of randomised trials”. BMJ. 359: j5237. doi:10.1136/bmj.j5237. PMC 5706533. PMID 29187358.

The Beauty and the Beam: the Magic of the Red Light Therapy.

Skeptical

While I was initially skeptical at the 8-minute treatment, after I started to calm my mind, I fell in love with it. From age spots, to dry skin and acne, it cures whatever ails you. Could sound like a magic potion from a princess but is just light therapy. Before you go with the “What the…?” face, it’s only a matter of time before it shows up in most of the celebrities’ social media.

Most of our users describe it as

“warm and relaxing, and allows you to go into a meditative state of mind.”

LED light therapy has an established history of skin uses. The U.S. Navy SEALs began using it in the 1990s to help heal wounds quickly and to help regenerate damaged muscle tissues.

Since then, the treatment has been researched for different situations in aesthetics. It’s mainly noted for increasing collagen and tissues.

There are different frequencies, or wavelengths, used with LED light treatment. These include red and blue light frequencies, which don’t contain ultraviolet rays and are readily absorbed into the skin.

Light therapy

Different than Daylight

Unlike ultraviolet rays from the sun which damage the DNA of skin cells, “light emitted in this spectrum is perfectly safe,” said Dr. Susan Bard, a board-certified dermatologist based in New York City.

That means there’s no tanning or burning when you’re exposed to red light. Its effects happen deep inside at the cellular level. All living things need to make ATP cellular energy to function and survive, and nearly all living things rely on natural light to power this process in our cells every day. Red and near-infrared wavelengths of natural light stimulate the mitochondria in your cells, the powerhouses responsible for taking light, oxygen, and the food we eat — and turning it into usable energy for our bodies through the process of cellular respiration.

Light therapy

Uses of Red Light

Red light therapy has been used to treat or improve the following:

  • pain
  • inflammation
  • healing
  • tissue regeneration
  • autoimmune diseases
  • brain disorders
  • athletic performance
  • eyesight
  • heating
  • cancer therapy side effects

“The number of conditions red light can treat is ‘continuously expanding”

said Michael R. Hamblin, PhD, a principal investigator at the Wellman Center for Photomedicine at Massachusetts General Hospital and associate professor of dermatology at Harvard Medical School.

The Short Version

Light therapy delivers safe, concentrated wavelengths of natural light to your skin and cells, with no chemicals, UV rays, or excess heat. These red and near-infrared wavelengths of light stimulate the mitochondria in your cells similar to natural sunlight, reducing oxidative stress, and increasing circulation, so your body is able to make more core energy to power itself.

In Kaiyan medical, we believe in the benefits of light. We believe in healing without chemicals. With our lights, we want you to have the best version of yourself.