Light Therapy & Sleep Quality: The Secret of the Chinese Female Basketball Players

Good sleep is a prerequisite for optimal performance. Given that people spend about one-third of their lives asleep, sleep has substantial development, daily functioning, and health. Perhaps no daytime behavior has been associated more closely with improved sleep than exercise. Researchers have shown that exercise serves as a positive function for sleep. Regular exercise consistently has been associated with better sleep. Moreover, the American Academy of Sleep Medicine considers physical exercise a modality of nonpharmacologic treatment for sleep disorders. When studying the influence of exercise on sleep, most investigators have compared acute and sedentary control treatments. In the study of regular moderate-intensity endurance exercise, researchers also provided compelling evidence that exercise promotes sleep.

However, exercise can negatively affect sleep quality. Exercising immediately before going to sleep is detrimental to sleep quality. Athletes train very hard to improve their on-field performances, but excessive training may decrease performance, known as overtraining syndrome. Researchers have shown that symptoms of overtraining indicate poor-quality sleep. Good sleep is an important recovery method for the prevention and treatment of overtraining in sports practice.

In a recent study in which red-light therapy (wavelength = 670 nm, light dose = 4 J/cm2) was used, researchers indicated that red light could restore glutathione redox balance upon toxicologic insult enhance both cytochrome c oxidase and energy production, all of which may be affected by melatonin. Melatonin is a neurohormone that is produced by the pineal gland and regulates sleep and circadian functions. No one knows whether sleep is regulated by melatonin after red-light irradiation in athletes. Researchers have demonstrated that phototherapy improves muscle regeneration after exercise. A red light could protect human erythrocytes in preserved diluted whole blood from the damage caused by experimental artificial heart-lung machines.

Participants

Twenty female athletes of the Chinese People’s Liberation Army team (age = 18.60 ± 3.60 years) participated in the study. All participants were healthy and were not using medications regularly or temporarily during the measurements. Athletes were excluded if they had participated in less than 80% of the scheduled team physical training and basketball sessions for the last 3 months or used any nutritional supplements or pharmacologic agents. All participants provided written informed consent, and the Ethical Committee approved the China Institute of Sport Science study.

Design

Participants were assigned randomly to either a red-light therapy intervention group (n = 10) or non–red-light therapy intervention group (placebo group, n = 10). Measurements were collected at preintervention (baseline) and postintervention (14 days). The exercise training schedule of the 2 groups was unchanged during the 14 days; the red-light treatment group used a red-light therapy instrument every night for total body irradiation for 30 minutes. The training routine of the athletes during the 14 intervention days included 12 exercise sessions with the following specifications: 2 hours of morning training, 2 hours of afternoon training, and no training on Sunday.

The red-light treatment participants lay in the supine position. Continuous illumination was performed using noncoherent red light from a whole-body red-light treatment machine-like Kaiyan’s red light therapy bed, with an average wavelength of 658 nm and a light dose of 30 J/cm2. The whole body received the phototherapy treatment. The placebo participants also lay in the supine position under the red-light device but did not receive any light illumination. All participants wore swimsuits to enhance irradiation from the device and were blind to the treatment.


Measurement

Sleep Quality

The Chinese version of the PSQI measured sleep quality. The 19-item measure assesses sleep quality and disturbances over a half-month time interval. The total PSQI score ranges from 0 to 21, and higher scores reflect poorer-quality sleep. The 7 items of this instrument measure several aspects of insomnia: difficulties with onset and maintenance of sleep, satisfaction with the current sleep pattern, interference with daily functioning, noticeable impairment attributed to sleep problems, degree of distress, and concern caused by any sleeping problems.

Cooper 12-Minute Run

Participants were instructed to complete as many laps as possible on a 400-m outdoor track during the 12-minute test period. Emphasis was placed on pacing oneself throughout the test. The test administrators counted the laps completed during the 12-minute test period while calling out the time elapsed at 3, 6, and 9 minutes and orally encouraging the participants. At the end of the 12-minute period, the test administrator instructed the participants to stop and used a measuring wheel to determine the fraction of the last lap completed by each participant. This distance was added to the distance determined by the number of laps completed to give the total distance covered during the test.

Serum Melatonin

In humans, the serum level of melatonin, derived mainly from the pineal gland, demonstrates a clear increase at night and a decrease during the day. Given that the masking effects of activities (e.g., exercise, sleep, and food intake) have little effect on the circulating melatonin level's daily pattern, melatonin secretion appears to directly reflect the function of the biological clock as a specific marker of the circadian rhythm.

Conclusions

The study has demonstrated that red-light illumination positively affected sleep quality and endurance performance variables in Chinese female basketball players. Based on previous studies, we can infer that red-light treatment contributes to increased melatonin secretion in the pineal gland and muscle regeneration. Although more studies involving phototherapy, sleep, and exercise performance need to be performed, red-light treatment is a possible nonpharmacologic and noninvasive therapy to prevent sleep disorders after training.

Acknowledgments

This research project was supported by the National Key Technologies R&D Program Fund of China (2006BAK37B06).

Originally from:


Red Light and the Sleep Quality and Endurance Performance of Chinese Female Basketball Players

Jiexiu Zhao, Ye Tian, Jinlei Nie, Jincheng Xu, Dongsen Liu

J Athl Train. 2012 Nov-Dec; 47(6): 673–678. doi: 10.4085/1062-6050-47.6.08

PMCID: PMC3499892

References

Skein M, Duffield R, Edge J, Short MJ, Mundel T. Intermittent-sprint performance and muscle glycogen after 30 h of sleep deprivation. Med Sci Sports Exerc. 2011;43(7):1301–1311. [PubMed] [Google Scholar]

Gerber M, Brand S, Holsboer-Trachsler E, Puhse U. Fitness and exercise as correlates of sleep complaints: is it all in our minds? Med Sci Sports Exerc. 2010;42(5):893–901. [PubMed] [Google Scholar]

Youngstedt SD. Effects of exercise on sleep. Clin Sports Med. 2005;24(2):355–365. xi. [PubMed] [Google Scholar]

Myllymaki T, Kyrolainen H, Savolainen K et al. Effects of vigorous late-night exercise on sleep quality and cardiac autonomic activity. J Sleep Res. 2011;20(1 pt 2):146–153. [PubMed] [Google Scholar]

Youngstedt SD, Kripke DF, Elliott JA. Is sleep disturbed by vigorous late-night exercise? Med Sci Sports Exerc. 1999;31(6):864–869. [PubMed] [Google Scholar]

Driver HS, Taylor SR. Exercise and sleep. Sleep Med Rev. 2000;4(4):387–402. [PubMed] [Google Scholar]

van Straten A, Cuijpers P. Self-help therapy for insomnia: a meta-analysis. Sleep Med Rev. 2009;13(1):61–71. [PubMed] [Google Scholar]

Tanskanen M, Atalay M, Uusitalo A. Altered oxidative stress in overtrained athletes. J Sports Sci. 2010;28(3):309–317. [PubMed] [Google Scholar]

Roose J, de Vries WR, Schmikli SL, Backx FJ, van Doornen LJ. Evaluation and opportunities in overtraining approaches. Res Q Exerc Sport. 2009;80(4):756–764. [PubMed] [Google Scholar]

Campbell SS, Dawson D, Anderson MW. Alleviation of sleep maintenance insomnia with timed exposure to bright light. J Am Geriatr Soc. 1993;41(8):829–836. [PubMed] [Google Scholar]

Guilleminault C, Clerk A, Black J, Labanowski M, Pelayo R, Claman D. Nondrug treatment trials in psychophysiologic insomnia. Arch Intern Med. 1995;155(8):838–844. [PubMed] [Google Scholar]

Yeager RL, Oleske DA, Sanders RA, Watkins JB, III, Eells JT, Henshel DS. Melatonin as a principal component of red light therapy. Med Hypotheses. 2007;69(2):372–376. [PubMed] [Google Scholar]

Radogna F, Diederich M, Ghibelli L. Melatonin: a pleiotropic molecule regulating inflammation. Biochem Pharmacol. 2010;80(12):1844–1852. [PubMed] [Google Scholar]

Leal Junior EC, Lopes-Martins RA, Rossi RP et al. Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med. 2009;41(8):572–577. [PubMed] [Google Scholar]

Leal Junior EC, Lopes-Martins RA, Baroni BM et al. Comparison between single-diode low-level laser therapy (LLLT) and LED multi-diode (cluster) therapy (LEDT) applications before high-intensity exercise. Photomed Laser Surg. 2009;27(4):617–623. [PubMed] [Google Scholar]

Itoh T, Murakami H, Orihashi K et al. Low power laser protects human erythrocytes in an in vitro model of artificial heart-lung machines. Artif Organs. 2000;24(11):870–873. [PubMed] [Google Scholar]

Buysse DJ, Reynolds CF, III, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213. [PubMed] [Google Scholar]

Buysse DJ, Ancoli-Israel S, Edinger JD, Lichstein KL, Morin CM. Recommendations for a standard research assessment of insomnia. Sleep. 2006;29(9):1155–1173. [PubMed] [Google Scholar]

Barclay NL, Eley TC, Buysse DJ, Rijsdijk FV, Gregory AM. Genetic and environmental influences on different components of the Pittsburgh Sleep Quality Index and their overlap. Sleep. 2010;33(5):659–668. [PMC free article] [PubMed] [Google Scholar]

Desmet KD, Paz DA, Corry JJ et al. Clinical and experimental applications of NIR-LED photobiomodulation. Photomed Laser Surg. 2006;24(2):121–128. [PubMed] [Google Scholar]

Whelan HT, Connelly JF, Hodgson BD et al. NASA light-emitting diodes to prevent oral mucositis in pediatric bone marrow transplant patients. J Clin Laser Med Surg. 2002;20(6):319–324. [PubMed] [Google Scholar]

Figueiro MG, Rea MS. The effects of red and blue lights on circadian variations in cortisol, alpha amylase, and melatonin. Int J Endocrinol. 2010;2010:829351. [PMC free article] [PubMed] [Google Scholar]

Lynch HJ, Wurtman RJ, Moskowitz MA, Archer MC, Ho MH. Daily rhythm in human urinary melatonin. Science. 1975;187(4172):169–171. [PubMed] [Google Scholar]

Miles A, Philbrick DR. Melatonin and psychiatry. Biol Psychiatry. 1988;23(4):405–425. [PubMed] [Google Scholar]

Lynch HJ, Jimerson DC, Ozaki Y, Post RM, Bunney WE, Jr, Wurtman RJ. Entrainment of rhythmic melatonin secretion in man to a 12-hour phase shift in the light/dark cycle. Life Sci. 1978;23(15):1557–1563. [PubMed] [Google Scholar]

Vaughan GM, Allen JP, Tullis W, Siler-Khodr TM, de la Pena A, Sackman JW. Overnight plasma profiles of melatonin and certain adenohypophyseal hormones in men. J Clin Endocrinol Metab. 1978;47(3):566–571. [PubMed] [Google Scholar]

Gastel JA, Roseboom PH, Rinaldi PA, Weller JL, Klein DC. Melatonin production: proteasomal proteolysis in serotonin N-acetyltransferase regulation. Science. 1998;279(5355):1358–1360. [PubMed] [Google Scholar]

Sack RL, Hughes RJ, Edgar DM, Lewy AJ. Sleep-promoting effects of melatonin: at what dose, in whom, under what conditions, and by what mechanisms? Sleep. 1997;20(10):908–915. [PubMed] [Google Scholar]

Wright HR, Lack LC. Effect of light wavelength on suppression and phase delay of the melatonin rhythm. Chronobiol Int. 2001;18(5):801–808. [PubMed] [Google Scholar]

Lack L, Wright H, Kemp K, Gibbon S. The treatment of early-morning awakening insomnia with 2 evenings of bright light. Sleep. 2005;28(5):616–623. [PubMed] [Google Scholar]

Baroni BM, Leal Junior EC, Geremia JM, Diefenthaeler F, Vaz MA. Effect of light-emitting diodes therapy (LEDT) on knee extensor muscle fatigue. Photomed Laser Surg. 2010;28(5):653–658. [PubMed] [Google Scholar]

Ihsan FR. Low-level laser therapy accelerates collateral circulation and enhances microcirculation. Photomed Laser Surg. 2005;23(3):289–294. [PubMed] [Google Scholar]

Baroni BM, Leal Junior EC, De Marchi T, Lopes AL, Salvador M, Vaz MA. Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur J Appl Physiol. 2010;110(4):789–796. [PubMed] [Google Scholar]

Hynynen E, Uusitalo A, Konttinen N, Rusko H. Heart rate variability during night sleep and after awakening in overtrained athletes. Med Sci Sports Exerc. 2006;38(2):313–317. [PubMed] [Google Scholar]

Find it interesting? Share it!

Light Therapy & Sleep Quality: The Secret of the Chinese Female Basketball Players

Good sleep is a prerequisite for optimal performance. Given that people spend about one-third of their lives asleep, sleep has substantial development, daily functioning, and health. Perhaps no daytime behavior has been associated more closely with improved sleep than exercise. Researchers have shown that exercise serves as a positive function for sleep. Regular exercise consistently has been associated with better sleep. Moreover, the American Academy of Sleep Medicine considers physical exercise a modality of nonpharmacologic treatment for sleep disorders. When studying the influence of exercise on sleep, most investigators have compared acute and sedentary control treatments. In the study of regular moderate-intensity endurance exercise, researchers also provided compelling evidence that exercise promotes sleep.

However, exercise can negatively affect sleep quality. Exercising immediately before going to sleep is detrimental to sleep quality. Athletes train very hard to improve their on-field performances, but excessive training may decrease performance, known as overtraining syndrome. Researchers have shown that symptoms of overtraining indicate poor-quality sleep. Good sleep is an important recovery method for the prevention and treatment of overtraining in sports practice.

In a recent study in which red-light therapy (wavelength = 670 nm, light dose = 4 J/cm2) was used, researchers indicated that red light could restore glutathione redox balance upon toxicologic insult enhance both cytochrome c oxidase and energy production, all of which may be affected by melatonin. Melatonin is a neurohormone that is produced by the pineal gland and regulates sleep and circadian functions. No one knows whether sleep is regulated by melatonin after red-light irradiation in athletes. Researchers have demonstrated that phototherapy improves muscle regeneration after exercise. A red light could protect human erythrocytes in preserved diluted whole blood from the damage caused by experimental artificial heart-lung machines.

Participants

Twenty female athletes of the Chinese People’s Liberation Army team (age = 18.60 ± 3.60 years) participated in the study. All participants were healthy and were not using medications regularly or temporarily during the measurements. Athletes were excluded if they had participated in less than 80% of the scheduled team physical training and basketball sessions for the last 3 months or used any nutritional supplements or pharmacologic agents. All participants provided written informed consent, and the Ethical Committee approved the China Institute of Sport Science study.

Design

Participants were assigned randomly to either a red-light therapy intervention group (n = 10) or non–red-light therapy intervention group (placebo group, n = 10). Measurements were collected at preintervention (baseline) and postintervention (14 days). The exercise training schedule of the 2 groups was unchanged during the 14 days; the red-light treatment group used a red-light therapy instrument every night for total body irradiation for 30 minutes. The training routine of the athletes during the 14 intervention days included 12 exercise sessions with the following specifications: 2 hours of morning training, 2 hours of afternoon training, and no training on Sunday.

The red-light treatment participants lay in the supine position. Continuous illumination was performed using noncoherent red light from a whole-body red-light treatment machine-like Kaiyan’s red light therapy bed, with an average wavelength of 658 nm and a light dose of 30 J/cm2. The whole body received the phototherapy treatment. The placebo participants also lay in the supine position under the red-light device but did not receive any light illumination. All participants wore swimsuits to enhance irradiation from the device and were blind to the treatment.


Measurement

Sleep Quality

The Chinese version of the PSQI measured sleep quality. The 19-item measure assesses sleep quality and disturbances over a half-month time interval. The total PSQI score ranges from 0 to 21, and higher scores reflect poorer-quality sleep. The 7 items of this instrument measure several aspects of insomnia: difficulties with onset and maintenance of sleep, satisfaction with the current sleep pattern, interference with daily functioning, noticeable impairment attributed to sleep problems, degree of distress, and concern caused by any sleeping problems.

Cooper 12-Minute Run

Participants were instructed to complete as many laps as possible on a 400-m outdoor track during the 12-minute test period. Emphasis was placed on pacing oneself throughout the test. The test administrators counted the laps completed during the 12-minute test period while calling out the time elapsed at 3, 6, and 9 minutes and orally encouraging the participants. At the end of the 12-minute period, the test administrator instructed the participants to stop and used a measuring wheel to determine the fraction of the last lap completed by each participant. This distance was added to the distance determined by the number of laps completed to give the total distance covered during the test.

Serum Melatonin

In humans, the serum level of melatonin, derived mainly from the pineal gland, demonstrates a clear increase at night and a decrease during the day. Given that the masking effects of activities (e.g., exercise, sleep, and food intake) have little effect on the circulating melatonin level's daily pattern, melatonin secretion appears to directly reflect the function of the biological clock as a specific marker of the circadian rhythm.

Conclusions

The study has demonstrated that red-light illumination positively affected sleep quality and endurance performance variables in Chinese female basketball players. Based on previous studies, we can infer that red-light treatment contributes to increased melatonin secretion in the pineal gland and muscle regeneration. Although more studies involving phototherapy, sleep, and exercise performance need to be performed, red-light treatment is a possible nonpharmacologic and noninvasive therapy to prevent sleep disorders after training.

Acknowledgments

This research project was supported by the National Key Technologies R&D Program Fund of China (2006BAK37B06).

Originally from:


Red Light and the Sleep Quality and Endurance Performance of Chinese Female Basketball Players

Jiexiu Zhao, Ye Tian, Jinlei Nie, Jincheng Xu, Dongsen Liu

J Athl Train. 2012 Nov-Dec; 47(6): 673–678. doi: 10.4085/1062-6050-47.6.08

PMCID: PMC3499892

References

Skein M, Duffield R, Edge J, Short MJ, Mundel T. Intermittent-sprint performance and muscle glycogen after 30 h of sleep deprivation. Med Sci Sports Exerc. 2011;43(7):1301–1311. [PubMed] [Google Scholar]

Gerber M, Brand S, Holsboer-Trachsler E, Puhse U. Fitness and exercise as correlates of sleep complaints: is it all in our minds? Med Sci Sports Exerc. 2010;42(5):893–901. [PubMed] [Google Scholar]

Youngstedt SD. Effects of exercise on sleep. Clin Sports Med. 2005;24(2):355–365. xi. [PubMed] [Google Scholar]

Myllymaki T, Kyrolainen H, Savolainen K et al. Effects of vigorous late-night exercise on sleep quality and cardiac autonomic activity. J Sleep Res. 2011;20(1 pt 2):146–153. [PubMed] [Google Scholar]

Youngstedt SD, Kripke DF, Elliott JA. Is sleep disturbed by vigorous late-night exercise? Med Sci Sports Exerc. 1999;31(6):864–869. [PubMed] [Google Scholar]

Driver HS, Taylor SR. Exercise and sleep. Sleep Med Rev. 2000;4(4):387–402. [PubMed] [Google Scholar]

van Straten A, Cuijpers P. Self-help therapy for insomnia: a meta-analysis. Sleep Med Rev. 2009;13(1):61–71. [PubMed] [Google Scholar]

Tanskanen M, Atalay M, Uusitalo A. Altered oxidative stress in overtrained athletes. J Sports Sci. 2010;28(3):309–317. [PubMed] [Google Scholar]

Roose J, de Vries WR, Schmikli SL, Backx FJ, van Doornen LJ. Evaluation and opportunities in overtraining approaches. Res Q Exerc Sport. 2009;80(4):756–764. [PubMed] [Google Scholar]

Campbell SS, Dawson D, Anderson MW. Alleviation of sleep maintenance insomnia with timed exposure to bright light. J Am Geriatr Soc. 1993;41(8):829–836. [PubMed] [Google Scholar]

Guilleminault C, Clerk A, Black J, Labanowski M, Pelayo R, Claman D. Nondrug treatment trials in psychophysiologic insomnia. Arch Intern Med. 1995;155(8):838–844. [PubMed] [Google Scholar]

Yeager RL, Oleske DA, Sanders RA, Watkins JB, III, Eells JT, Henshel DS. Melatonin as a principal component of red light therapy. Med Hypotheses. 2007;69(2):372–376. [PubMed] [Google Scholar]

Radogna F, Diederich M, Ghibelli L. Melatonin: a pleiotropic molecule regulating inflammation. Biochem Pharmacol. 2010;80(12):1844–1852. [PubMed] [Google Scholar]

Leal Junior EC, Lopes-Martins RA, Rossi RP et al. Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med. 2009;41(8):572–577. [PubMed] [Google Scholar]

Leal Junior EC, Lopes-Martins RA, Baroni BM et al. Comparison between single-diode low-level laser therapy (LLLT) and LED multi-diode (cluster) therapy (LEDT) applications before high-intensity exercise. Photomed Laser Surg. 2009;27(4):617–623. [PubMed] [Google Scholar]

Itoh T, Murakami H, Orihashi K et al. Low power laser protects human erythrocytes in an in vitro model of artificial heart-lung machines. Artif Organs. 2000;24(11):870–873. [PubMed] [Google Scholar]

Buysse DJ, Reynolds CF, III, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213. [PubMed] [Google Scholar]

Buysse DJ, Ancoli-Israel S, Edinger JD, Lichstein KL, Morin CM. Recommendations for a standard research assessment of insomnia. Sleep. 2006;29(9):1155–1173. [PubMed] [Google Scholar]

Barclay NL, Eley TC, Buysse DJ, Rijsdijk FV, Gregory AM. Genetic and environmental influences on different components of the Pittsburgh Sleep Quality Index and their overlap. Sleep. 2010;33(5):659–668. [PMC free article] [PubMed] [Google Scholar]

Desmet KD, Paz DA, Corry JJ et al. Clinical and experimental applications of NIR-LED photobiomodulation. Photomed Laser Surg. 2006;24(2):121–128. [PubMed] [Google Scholar]

Whelan HT, Connelly JF, Hodgson BD et al. NASA light-emitting diodes to prevent oral mucositis in pediatric bone marrow transplant patients. J Clin Laser Med Surg. 2002;20(6):319–324. [PubMed] [Google Scholar]

Figueiro MG, Rea MS. The effects of red and blue lights on circadian variations in cortisol, alpha amylase, and melatonin. Int J Endocrinol. 2010;2010:829351. [PMC free article] [PubMed] [Google Scholar]

Lynch HJ, Wurtman RJ, Moskowitz MA, Archer MC, Ho MH. Daily rhythm in human urinary melatonin. Science. 1975;187(4172):169–171. [PubMed] [Google Scholar]

Miles A, Philbrick DR. Melatonin and psychiatry. Biol Psychiatry. 1988;23(4):405–425. [PubMed] [Google Scholar]

Lynch HJ, Jimerson DC, Ozaki Y, Post RM, Bunney WE, Jr, Wurtman RJ. Entrainment of rhythmic melatonin secretion in man to a 12-hour phase shift in the light/dark cycle. Life Sci. 1978;23(15):1557–1563. [PubMed] [Google Scholar]

Vaughan GM, Allen JP, Tullis W, Siler-Khodr TM, de la Pena A, Sackman JW. Overnight plasma profiles of melatonin and certain adenohypophyseal hormones in men. J Clin Endocrinol Metab. 1978;47(3):566–571. [PubMed] [Google Scholar]

Gastel JA, Roseboom PH, Rinaldi PA, Weller JL, Klein DC. Melatonin production: proteasomal proteolysis in serotonin N-acetyltransferase regulation. Science. 1998;279(5355):1358–1360. [PubMed] [Google Scholar]

Sack RL, Hughes RJ, Edgar DM, Lewy AJ. Sleep-promoting effects of melatonin: at what dose, in whom, under what conditions, and by what mechanisms? Sleep. 1997;20(10):908–915. [PubMed] [Google Scholar]

Wright HR, Lack LC. Effect of light wavelength on suppression and phase delay of the melatonin rhythm. Chronobiol Int. 2001;18(5):801–808. [PubMed] [Google Scholar]

Lack L, Wright H, Kemp K, Gibbon S. The treatment of early-morning awakening insomnia with 2 evenings of bright light. Sleep. 2005;28(5):616–623. [PubMed] [Google Scholar]

Baroni BM, Leal Junior EC, Geremia JM, Diefenthaeler F, Vaz MA. Effect of light-emitting diodes therapy (LEDT) on knee extensor muscle fatigue. Photomed Laser Surg. 2010;28(5):653–658. [PubMed] [Google Scholar]

Ihsan FR. Low-level laser therapy accelerates collateral circulation and enhances microcirculation. Photomed Laser Surg. 2005;23(3):289–294. [PubMed] [Google Scholar]

Baroni BM, Leal Junior EC, De Marchi T, Lopes AL, Salvador M, Vaz MA. Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur J Appl Physiol. 2010;110(4):789–796. [PubMed] [Google Scholar]

Hynynen E, Uusitalo A, Konttinen N, Rusko H. Heart rate variability during night sleep and after awakening in overtrained athletes. Med Sci Sports Exerc. 2006;38(2):313–317. [PubMed] [Google Scholar]

Neonatal Care Taps into Light Therapy

When a baby is born, all parents hope for a healthy child—all ten fingers and toes, a strong heart, and an able body. However, between 10 and 15 percent of babies born within the U.S. require special care within the NICU (Neonatal Intensive Care Unit), which is where preterm or diseased babies are cared for. 

This time is crucial for babies; it's the stage in which we, as humans, are most sensitive. After the first hour of life, newborns should receive eye care, vitamin K, and recommended immunizations (birth dose of OPV and Hepatitis B vaccine). They should be assessed for birth weight, fetal age, congenital disabilities, and newborn illness signs. Special care is provided for sick newborns, preterm and/or low birth weight, and babies exposed or infected by HIV or have congenital syphilis.

One of the more common diseases for premature babies is jaundice, which refers to the yellowish discoloration of the skin, sclerae, and mucous membranes caused by an increase in bilirubin in the blood. This substance derives from the metabolism of hemoglobin contained in red blood cells. For the newborn, it is (in most cases) destined to disappear within a few days.

Jaundice becomes evident when the amount of bilirubin exceeds 3 mg per deciliter. The yellowish color occurs first in the face and sclerae (the white part of the eye) and then extends to the trunk and upper and lower limbs. Jaundice can be physiological or indicate a pathology.

However, jaundice can become severe. This happens when it goes untreated for too long, it can cause a condition called kernicterus. Kernicterus is a type of brain damage resulting from high levels of bilirubin in a baby's blood. It can cause cerebral palsy and hearing loss.

Babies are naturally sensitive, and premature newborns are even more at risk. Their immune systems are still developing due to being born prematurely, which increases their risk of getting sick. Skin conditions of many kinds are common; in addition to jaundice, many experience feeding issues, and fever (always the first sign of an infection). 

Due to the nature of premature babies, it's essential to consider a non-invasive, non-medical treatment. They're still growing, just fully coming into their own and catching up on time missed developing in mom’s belly. 

Light therapy is an incredible tool for these little humans, working inward and targeting the cellular level. It helps with both external and internal problems, which means that at the cellular level, light therapy alters and enhances the cell constitution. This, as a result, leads to faster and better reproduction, creating a healthier and stronger organism and body to function with. 

Light therapy is a non-invasive, non-pharmaceutical form of therapy. The way it can help with neonatal care is unique. During treatments, the babies are completely safe and protected, with their eyes covered. The skin gets exposed to the light therapy lamp to absorb its benefits. The lamp is positioned specifically for the baby, no closer than 30.5cm. 

Light therapy has successfully treated newborn jaundice by lowering the bilirubin levels in the baby's blood through a process called photo-oxidation. Photo-oxidation adds oxygen to the bilirubin, making it dissolve in water easily. 

Since light therapy also helps to regulate circadian rhythm and melatonin, the treatments can also help babies sleep, which is essential in their healing and development. 


You can customize and completely control light therapy consumption for babies, thanks to Kaiyan Medical’s state-of-the-art light therapy device manufacturing services. We have been working for 15 years to produce the best light therapy products on the market which are MDA-certified and FDA-approved light therapy devices, many of which are cleared for at-home treatments. Of course, before using a light therapy device, always consult your doctor.

Light Therapy Proves Effective in COVID-19 Treatment Once Again

Even though we’ve been in the pandemic for over a year now, we are still collecting knowledge on the disease. No one could’ve prepared us for the impact of this virus, and COVID-19 has changed our lives forever. 

It is a disease caused by the coronavirus, and the symptoms are similar, but people react differently. It isn’t a virus that gives the same outcome, which is why we have to be so cautious with it. Most common symptoms include fever and dry cough, and extreme fatigue. Apart from those, the other major symptoms are a loss of smell and taste, joint pain, diarrhea, conjunctivitis, and headaches.

Scientists and doctors have learned that respiratory problems are the biggest issue while having the disease. The downfall of our immune system during COVID-19 is what gives a chance for pneumonia to develop. Apart from those symptoms and the dangers of getting pneumonia, there’s also potential long-term effects. 

So far, only one peer-reviewed study has reported results on the long-term symptoms of COVID-19 infection: a single group of 143 survivors from Rome. Most of them did not need hospitalization and were assessed at least 60 days after infection. They reported a worsened quality of life in 44.1% of cases, including symptoms of persistent fatigue (53.1%), breathlessness (43.4%), joint pain (27.3%), and chest pain (21.7%).

Treatment has evolved within this short period, and now with the vaccine in power, it poses a question: is it the only solution? It's still necessary to nourish our immune system no matter what; intake of vitamins and supplements is still highly advised. But naturally, aside from the vaccine, you would want a non-invasive alternative as well, which is where light therapy comes into play.

Red light therapy is a non-invasive and non-pharmaceutical method of treatment. It works with light that emits at a close, safe distance, penetrating into the cells. Once it reaches cell level, it helps reproduce ATP, which gives a higher and better cell turnout. 

Our cells rejuvenate and reproduce themselves; light therapy only aids in this natural process. With light therapy, we get a better and higher count of cells that are genetically improved over time with treatment. 

The ways in which light therapy can help with COVID-19 have been studied for a while now, and we shared some information on early clinical trials with you previously. 

Light therapy can help with COVID-19 in reducing severity and prominence of symptoms; it works so that light therapy generates the activation of mitochondrial antiviral signaling protein (MAVS), thus resulting in the reduced expression of viral spike protein and restores the proliferation of infected cells.

Your cells are healing your body by using light therapy––similar to how UV light therapy aids wound healing––and it is there to provide you with more vital cells for your system. A significant reduction of viral infection in the trachea was noticed, the spots where we notice symptoms first, such as our nose and our throats. This means that light therapy helps regulate and decrease the possibility of getting a respiratory disease like pneumonia. 

A significantly smaller level of C-reactive protein was observed within seven days of UVA therapy regarding biochemical parameters. It proves that light therapy helps with the deconstruction of damaging proteins in our cells. 

Photo-disinfection is used to get rid of harmful bacteria from surgical patients; this is only another form of that. There's also a method where a non-toxic dye is inserted into the nose. It is one that is triggered by light, and then it is measured whether or not the light therapy device has successfully inactivated the virus. This method is used in the early stages of COVID-19.

The one used in the beforehand mentioned study included a light therapy device equipped with a multi-LED UVA light catheter connected to the nasal tube to deliver UVA light to the patients. Our devices are created with multi-LED, so the type of light therapy is your choice, depending on your needs.

The UVA therapy was administered for 20 minutes to all patients once daily for 5 consecutive days. Before the treatment, all patients received oxygen supplementation for 30 minutes. The regimen varies however light therapy should be done consecutively and 10 to 15 minutes.

The coronavirus is still here, but you’re not defenseless. Kaiyan Medical works to develop the best high-quality light therapy devices, with FDA-approved and MDA-certified light therapy devices perfect for at-home treatments. Whether you’re looking to bolster your immune system or wish to provide non-invasive treatment to patients with COVID-19, light therapy is an incredibly powerful and effective tool in fighting the serious symptoms of this virus.

Beard Growth & Light Therapy

Beard Growth & Light Therapy

“The benefit of having a beard is protection, as well as aesthetics,” says Dave Harvey, M.D. “It's good protection against wind, chafing, and traumatic injury. It’s also a trend, so we see a lot of men with some form of facial hair.”

The Health Benefits of Beards

Beards can:

  • Protect skin from sun damage. Beards can help protect the skin from harmful UV rays, though the degree of protection may depend on hair density and thickness. “You’re going to have some protection because hair is a reflective medium,” says Dr. Harvey. “Even though some UV rays get through, there is some scattering of the light, and that’s how it helps protect against sun damage.”
  • Keep you warm. Beards can add a layer of protection to your chin and neck, thus keeping you warm in colder weather. The longer and fuller the beard, the better it will insulate your face.
  • Make you feel more attractive. A study conducted by the Official Journal of the Human Behavior and Evolution Society found that men with a moderately full beard are most attractive. Men with full beards may be perceived as better fathers who could protect and invest in their children. “Men with beards have a powerful look,” says Dr. Harvey. “And that’s an attractive thing.”

Common Problems for Beard Growers

Growing a beard is not always easy. And if your beard is not properly cared for, it can become a harbinger for bacteria.

“If you don’t clean your beard well, and you let it just do its own thing, sometimes you can accumulate yeast and get dandruff within the beard,” says Dr. Harvey. “With that, you’ll get a reactive scaling on the face and flaking like you would with dandruff. So those patients need to be put on antifungal shampoo.”

Beard growers also face the challenge of ingrown follicles that result in bumps known as acne keloidalis.

“Some men will get a raised scarring type of bump called an acne keloidalis of the neck,” he says. “So we offer them topical antibiotics or Retin A for those particular reasons.”

Low-Level Laser Therapy for Beards

Low-level laser therapy (LLLT) is an FDA-approved treatment using laser light energy to circulate blood flow to hair follicles. Laser therapy for hair growth can be used to stop hair loss in men and women. The non-invasive lasers stimulate hair follicles to induce regrowth, resulting in a thicker beard in several weeks of treatments.

Laser hair therapy is also called red light therapy. The process irradiates photons in skin tissue, resulting in photons being absorbed into weaker hair follicles and promoting hair growth.

How Successful Is Laser Hair Restoration?

Laser treatment for hair loss works because photons amp up circulation and stimulation, which brings back hair follicles that may have died off.

Clinical Study

Laser hair restoration therapy is continuing to develop. Still, the National Institutes of Health has conducted multiple studies on laser hair growth therapy to see if it works for those with alopecia and male pattern baldness.

The NIH study used a controlled clinical trial that found laser hair therapy works for men and women, and it’s safe.

Another study from 2013 included male participants aged 18 to 48. The result of laser hair therapy treatment included a 39 percent increase in hair growth for participants over four months.

However, laser therapy is just one piece of the puzzle. Many factors contribute to repeated hair loss, including:

  • Age.
  • Genetics.
  • Medical conditions like diabetes and lupus.
  • Hormones.
  • Poor diet.
  • Side effects of medications, such as chemotherapy.
  • Stress.

How Long Does Laser Hair Therapy Take To Work?

From your first treatment, it can take several weeks to see a noticeable difference. This is because red light therapy for hair loss must be administered multiple times over 4 to 6 weeks to begin working.

If you don’t see any growth after 90 days, it’s probably unlikely you’ll regrow hair with this method. You should consult your doctor about the growth cycle and see how long it will take.

Wellness Gurus: Who's Turning to Light Therapy for Full-Body Treatment

Light therapy has many benefits, working from the inside, out. It not only helps with our appearance but also internal wellness — because who said beauty's just skin deep? 

Many people find themselves turning to this new form of treatment since it's non-invasive and comes with long-term positive effects — something most people aren't used to hearing. 

While outwardly, the skin smooths out, pores are reduced, wrinkles diminished, and collagen restored. Inwardly, light therapy works directly with our cells, generating an increase of ATP, the energy that fuels us. 

LED Light Therapy uses color wavelengths of visible light, each with specific skin benefits. Due to sun damage, aging, skin disorders, healthy skin cells are compromised and have a more difficult time renewing themselves normally.

But why are wellness gurus going crazy for light therapy? 

Light therapy is not that new; however, it's been gaining popularity due to its benefits, especially in the wellness industry. While everyone is eager to look younger, going under the knife is very invasive. Light therapy is not only effective and easy to use; it's non-invasive. The device needed for light therapy is usually a lamp or light therapy box. 

Is light therapy good for skin? Absolutely. And one of the best things next to the long-term effects is that light therapy can be used as laser light therapy at home. This is the most comfortable way of having the benefits of light therapy. Many celebrities themselves are opting for this route as opposed to invasive treatments.

Light is used as a source of energy, and our skin soaks it up, turning it into ATP (our life fuel). Cells reproducing faster and more efficiently brings the repair and rejuvenation of damaged cells, or, in the case of treating acne, kill bacteria. This stimulates the production of collagen and elastin, boosts circulation, and accelerates tissue repair. You simply lie underneath a light screen during the treatment while the LED light device.

What can light therapy be used for you may be wondering? It isn't only beneficial for your skin; it works directly within our cells, accelerating ATP production. This makes it helpful with overall health, physical and mental. Light exposure has also been linked to being a trigger of serotonin, the way natural light does as well. Not only does it trigger serotonin, but also melatonin, which helps regulate your sleep cycle. 

Luckily, instead of having to go to a doctor for your treatments, you have your own LED light therapy mask or device in the comfort of your home. Allowing wellness gurus and everyday people to enjoy the benefits of red light therapy. 

Light therapy devices work not only the face but as a full body treatment that can help with muscle tension and fascia. Fascia is the connecting tissue that holds every organ, blood vessel, bone, nerve fiber, and muscle in place.

Gwyneth Paltrow even explores on goop.com the many different appealing sides to it. “Light acts as a mild stressor on the body in a dose-dependent manner. We always consider stress to be a bad thing, but at low levels, stress can be good for us. It conditions our tissues and stimulates endogenous protective responses that prime us for either existing or future insult.”

Kourtney Kardashian has taken her LED light therapy mask to the public as well, promoting the device and its benefits. She enjoys both red and blue light treatments, often posting her with her at-home mask. She’s mentioned retinol use alongside the regular treatments, and other skin rejuvenating products. 

But more and more celebrities and wellness gurus are turning to light therapy for a full body treatment. Jessica Alba, alongside celebrities including Emma Stone, Chrissy Teigen, Lena Dunham, Kelly Rowland, and Real Housewives of New York City’s Carole Radziwill, have openly discussed red light therapy treatment. 

Many top skincare and wellness brands are turning to Kaiyan for their red light therapy device production. And though we produce devices that are incredibly effective, our devices are also MDA-certified and FDA-approved, giving you security in knowing your devices not only are effective but are safe. 

Conducting a Well-Controlled Clinical Trial for the FDA

In a scientific experiment, the tighter the controls on the experiment’s variables are, the more accurate and insightful the research’s findings will be. It’s the same case for clinical trials in the life sciences industry. A well-controlled clinical trial rooted in the scientific method's foundation will produce more reliable data and conclusions.

But how do you define a “well-controlled” clinical trial? Much to the relief of the life sciences manufacturers and their research teams, the U.S. Food and Drug Administration (FDA) provides explicit guidance on what it means to conduct an adequate and well-controlled clinical trial in 21 CFR 314.126.

What Is a Clinical Trial?

According to clinicaltrials.gov, in a clinical trial (also called an interventional study), participants receive specific interventions according to the research plan or protocol created by the investigators. These interventions may be medical products, such as drugs or medical devices, procedures, or changes to participants’ behavior — for example, diet.

What’s the Difference Between Medical Device Clinical Trials and Drug Trials?

Many of the same factors that make a well-controlled clinical trial for medical devices are similar to what makes a well-controlled drug trial. Still, there are some fundamental differences researchers need to know.

Key differences between medical device trials versus drug trials include:

  • Differences in the Subjects who Participate. In most drug trials, the drug is tested on a small group of healthy individuals first, then administered to incrementally larger populations. Medical device trials typically only involve subjects with the condition for which the trial is designed.
  • Differences in who Administers Drugs versus Devices. In a drug trial, the patient or patient’s caregiver is typically the person who administers the drug. In a medical device trial, the person administering the device is typically the principal investigator.
  • Differences in who has Greater Responsibility. In a drug trial, the patient typically has a higher responsibility for taking the drug as required. In a device trial, the physician shares a greater part of ensuring the device is operated correctly.
  • Differences in Training Requirements. Because the physician has a greater responsibility to administer medical devices correctly, a medical device trial typically requires more practical experience — such as training in cadaver labs or proctoring during live cases.
  • Differences in the FDA Approval Process. The approval process for new drugs is typically longer than the approval process for medical devices. While it takes 12 years on average to bring a new drug to market, the average length of time it takes to bring a medical device to market is three to seven years. However, this does not always mean it’s easier to obtain approval for a new medical device. The extent of the approval process and whether a medical device requires premarket approval depends on its classification. Medical devices determined to carry significant risks to human subjects generally require premarket approval.

Which FDA Regulations Are Required in a Clinical Trial?

Both drug and device trials follow the same requirements for protecting human subjects, maintaining records, and disclosing financial relationships. Those requirements include:

  • 21 CFR 11 — Electronic medical records.
  • 21 CFR 50 — Human subject protection.
  • 21 CFR 54 — Financial disclosure.
  • 21 CFR 56 — Institutional Review Board (IRB) requirements.

While drug trials are required to follow 21 CFR 312, medical device trials are governed by 21 CFR 812.

What Makes A Well-Controlled Clinical Trial?

Whether it’s a drug trial or a medical device trial, the FDA makes it clear that all trials should have the following:

  • A clear statement of the investigation's objectives and a summary of the proposed methods of analysis in the protocol.
  • A design that permits a valid comparison with control to provide a quantitative assessment of the effect.
  • The subject selection provides adequate assurance that the subject has the disease or condition that the treatment is directed at.
  • A method of assigning patients to treatment and control groups minimizes bias and assures the groups' comparability.
  • Adequate measures to minimize bias by the subjects, observers, and data analysts.
  • Well-defined and reliable assessment of subjects’ responses.
  • Analysis of the results is adequate to assess the effect of the drug or device.

The experiment variables are designed to prove or disprove a causal relationship between the independent and dependent variables. This would be the drug or device versus the condition of the patient.

Control is a vital element of a well-designed experiment of the main variables. There needs to be a way to rule out the effects of extraneous variables other than the dependent and independent ones.

A good experiment, like a good clinical trial, often has blind controls or double-blind randomization to compare the results. The goal for a well-controlled experiment is for it to be repeated many times with the same or statistically similar results. Clinical trials are typically not repeated as much as they are designed with large numbers of subjects to remove the bias in a study with small subject sampling. This helps to rule out random samples or outliers in the “experiment.”

Many would argue other things go into the makeup of a well-controlled clinical trial, especially once sites and patients get involved. Having a research team with adequate facilities, knowledge of the federal regulations, and the time and staff to work on the project are also imperative. Additionally, having timely, well-documented data is vital to the trial’s continued success, which helps ensure the trial is being conducted in a way that will produce relevant results.

What Can We Do To Conduct Well-Controlled Clinical Trials?

A well-controlled clinical trial starts with a strong understanding of the risks involved and proper planning to mitigate those risks. Today, it increasingly requires deep knowledge of FDA regulations and global requirements like the European Union’s Medical Device Regulation (MDR) and In Vitro Device Regulation (IVDR) requirements.

Managing the many risks of any trial and keeping it moving forward requires diligent monitoring, record-keeping, and seamless coordination between all parties involved.

Finally, as clinical trials wind down, researchers need to ensure they have all the correct documentation in order in their trial master file.

A full-service contract research organization (CRO) with expertise in conducting global clinical trials is invaluable when conducting a well-controlled clinical trial. They can assist with clinical planning and consulting before a trial begins. They can help with monitoring, auditing, project management, and safety management during the trial. And they can ensure all your documents are in order as you wrap up a trial so you can obtain approval.

FDA Premarket Requirements

Bringing a device to the market in the United States may appear complex. Following these four steps may assist you in navigating the process:

1) Classify Your Device and Understand Applicable Controls

The first step in preparing a marketing device in the United States is to determine how the FDA has classified your device. A medical device is defined by law in section 201(h) of the Federal Food, Drug and Cosmetic (FD&C) Act.

Medical devices are categorized into three classes (I, II, or III) based on the degree of risk they present. As device class increases from class I to class II to class III, the regulatory controls also increase, with class I devices subject to the least regulatory control and class III devices subject to the most stringent regulatory control.

2) Select and Prepare the Correct Premarket Submission

You should select and prepare the appropriate premarket submission if required for your specific product’s classification. For most medical devices, the appropriate submission type is identified within the product classification, which may be obtained from the public Product Classification database. Note some device types do not require a premarket submission. The most common types of premarket submissions include:

  • 510(k) (Premarket Notification)
  • PMA (Premarket Approval)
  • De Novo Classification Request
  • HDE (Humanitarian Device Exemption)

510(k)

Some class I and most Class II devices require a 510(k). In a 510(k), the sponsor must demonstrate that the new device is “substantially equivalent” to a predicate device in terms of intended use, technological characteristics, and performance testing, as needed.

Some class I and class II devices are exempt from the 510(k) notification requirement if they do not exceed the exemption limitations stated in 21 CFR xxx.9, where xxx refers to 21CFR 862–892.

PMA

Class III devices require a PMA. A PMA is the most stringent type of premarket submission. Before the FDA approves a PMA, the sponsor must provide valid scientific evidence demonstrating reasonable assurances of safety and effectiveness for the device’s intended use.

De Novo Classification Request

The De Novo process provides a pathway to classify novel medical devices for which general controls alone, general and special controls, provide reasonable assurance of safety and effectiveness for the intended use. Still, there is no legally marketed predicate device.

HDE

HDE provides a regulatory pathway for class III devices intended to benefit patients with rare diseases or conditions. For a device to be eligible for an HDE, a sponsor must first obtain designation as a Humanitarian Use Device (HUD).

3) Prepare the Appropriate Information for the Premarket Submission

Once you have prepared the appropriate premarket submission for your device, you need to send your submission to the FDA and interact with FDA staff during its review. Before sending your submission to the FDA, you should be aware of the following:

  • Medical Device User Fees: There is a user fee associated with the submission of certain marketing applications.
  • Small Business Determination (SBD) Program: A qualified and certified business as a “small business” is eligible for substantially reducing most of these user fees.
  • eCopy: Premarket submissions must include an electronic copy (eCopy) on a compact disc (CD), digital video disc (DVD), or a flash drive.

Once the FDA has received your submission, you should be aware of the following:

  • Administrative Review: After a premarket submission is received, the FDA conducts an administrative review to assess whether the submission is sufficiently complete to be accepted for substantive review.
  • Interactive Review: While submission is under review, the FDA staff communicates with applicants to increase the review process's efficiency. Step Four: Comply with Applicable Regulatory Controls, Including Establishment Registration and Device Listing

Regulatory controls are risk-based requirements that apply to medical devices and give the FDA the oversight to ensure medical devices' reasonable safety and effectiveness.

SAD - Seasonal Affective Disorder 101

The first formal description of Seasonal Affective Disorder (SAD), the most well-known psychiatric condition associated with seasonality in humans, was introduced in the mid-1980s by Rosenthal, who described a group of 29 patients living in a temperate climate who experienced depressive episodes characterized by hypersomnia, hyperphagia, and weight gain in the fall or winter, and whose symptoms remitted by the next spring or summer.

SAD was incorporated into the Diagnostic and Statistical Manual (DSM) of Mental Disorders III-R when “seasonal pattern” was introduced as a specifier for Major Depression and Bipolar Disorders. Subsequent revision in DSM-IV described SAD as “a regular temporal relationship between the onset of Major Depressive Episodes in Bipolar I (BPI) or Bipolar II (BPII) Disorder or Major Depressive Disorder (MDD), recurrent, and a particular time of the year.”

Today, SAD, or MDD with seasonal pattern, is defined as recurrent episodes of major depression that meet the following criteria: at least two consecutive years where the onset and offset of depressive symptoms occur at characteristic times with no non-seasonal episodes, a temporal relationship between onset of symptoms and time of year, a temporal relationship between remission of symptoms and time of year, and an outnumbering of seasonal compared to non-seasonal episodes throughout the lifetime of the patient.

Pathophysiology of SAD

To date, the pathophysiology of SAD is unclear. Early research into the mechanism of SAD focused on day length or photoperiod. This hypothesis posited that shorter days in winter, possibly mediated by a longer duration of nocturnal melatonin secretion, leads to depressed mood in susceptible individuals. To date, there is little data to support this hypothesis. Furthermore, given that bright light in the evening has not been as effective as that given in the morning, it now seems unlikely that the photoperiod is the underlying pathological mechanism of SAD.

Although some animal studies have implicated a direct effect of light on the midbrain (Miller, Miller, Obermeyer, Behan, & Benca, 1999; Miller, Obermeyer, Behan, & Benca, 1998), the most prominent hypothesis driving human studies involves disruption of circadian rhythms. Research on the role of serotonin is also active.

Circadian Rhythm

A circadian rhythm refers to the approximately 24-hour cycle of physiological processes present in humans and other animals. This cycle is governed via clock gene expression by the suprachiasmatic nucleus (SCN), the master pacemaker located within the anterior hypothalamus. Though the SCN endogenously generates circadian oscillations, SCN endogenously generates circadian oscillations, and they need to be entrained to the 24-hour day by external cues. Light exposure is the most important synchronizing agent of endogenous circadian rhythms.

Downstream of the SCN, a collection of systemically active neurohumoral networks transduce circadian information to the rest of the body. For instance, via projections to the hypothalamus's paraventricular nucleus, the activation of the SCN leads to autonomic changes, including cardiovascular modulation, and together the central, peripheral, and autonomic nervous systems collaborate to affect systemic changes. Thus, the SCN receives information about the external day-night cycle directly through retinofugal pathways and indirectly through neuromodulatory signaling. Circadian information is then relayed systemically through neurohumoral networks.

The current primary hypothesis for the pathophysiology of SAD, known as the “phase-shift hypothesis,” posits that there is an optimal relationship in the alignment of the sleep-wake cycle and the endogenous circadian rhythm. During the fall and winter, as day length shortens, the circadian rhythm begins to drift later concerning clock time and the sleep-wake cycle. This phase delay is hypothesized to bring about mood symptoms. A pulse of morning bright light generates a circadian phase advance, which is thought to correct the discordance between sleep and circadian phase, thereby ameliorating depressive symptoms. However, the phase-shift hypothesis would predict that the amount of phase correction required for each patient would depend on an individual’s PAD, which has not yet been proven.

Serotonin

Several studies have also proposed that serotonin is implicated in the pathophysiology of SAD, as selective serotonin reuptake inhibitors (SSRIs) appear to be effective in the treatment of SAD. Supporting this hypothesis, one study used Positron Emission Tomography (PET) imaging to look at binding probability at synaptic serotonin transporters in 88 normal individuals living in the temperate climate of Toronto, Canada (Praschak-Rieder, Willeit, Wilson, Houle, & Meyer, 2008). The binding probability was increased during fall and winter compared to warmer months, thus eliciting an inverse correlation between binding potential and sunlight durationsunlight duration. Of note, the largest difference in transporter binding was found in the mesencephalon, a finding consistent with animal studies demonstrating the importance of direct effects of light to the midbrain on behavior. If increased transporter activity indicated greater reuptake of serotonin during the fall/winter, and if this resulted in a lower density of cleft serotonin, then the seasonal variation in transporter activity (i.e., higher transporter efficiency in the winter) would seem to leave susceptible individuals particularly prone to mood symptoms during the darker seasons. Moreover, following BLT and during periods of remission in the summer months, the synaptic transporter activity was shown to be reduced to control levels in these patients.

Eating Disorders

BLT has also been investigated to a lesser extent in eating disorders. Because binge eating episodes have been observed to increase in fall and winter in some patients, BLT has been examined as a treatment modality for anorexia nervosa (AN) and bulimia nervosa (BN). Thus, BLT's effects on patients with eating disorders remain enigmatic. Additional studies, including larger, randomized, blinded, and controlled trials, are needed to elucidate further the role of BLT in treating this patient population. Further research might also determine whether BLT would be a useful treatment in Binge-Eating Disorder, a diagnosis new to DSM-5.

Adult ADHD

Additionally, BLT has been studied in the context of adult Attention-Deficit/Hyperactivity Disorder (ADHD), where, in addition to normal ADHD symptoms, patients often have depressed mood and difficulties falling asleep, awakening on time, and maintaining arousal (Brown & McMullen, 2001). These symptoms are indicative of a possible delay in the circadian rhythm. A case report of symptom improvement following BLT in a child with ADHD who displayed signs of delayed sleep phase also supports the idea that BLT may be useful in treating symptoms of ADHD (Gruber, Grizenko, & Joober, 2007). Whether the pathways that subserve the improvement of mood symptoms in response to BLT are the same pathways that underlie the seemingly beneficial effects of BLT in ADHD remains to be studied. While these results are promising, further studies, preferably in randomized, blinded, and controlled studies will need to be performed.

Finally

A significant immediate reduction of depression scores with light treatment can be identified after 20 minutes and reaches the maximum at 40 minutes, with no additional benefit at 60 minutes. The rate of change is steepest during the first 20 minutes of light as compared with longer intervals. Comparing the clinical impact of these durations of administration may yield different results when measured after several daily sessions. The overnight effect on circadian rhythms and sleep was not assessed in our study and is thought to impact mood regulation in SAD. Larger, prospective, controlled, and hypothesis-driven studies in more naturalistic conditions would be desirable to replicate our study results and our study results and analyze the temporal dynamic of the persistence of the immediate mood-improvement effects. Besides, in larger samples, one could define early responders and nonresponders, analyze genetic (e.g., melanopsin related genes), demographic (children, adolescents, adults, elderly, gender), physiological (e.g., pupillary responses), and clinical (e.g., abundant atypical symptoms) predictors for early response. If proven effective and efficacious, shorter exposures to bright light could become a feasible and broadly employed intervention for immediate mood improvement as an early step on the road toward full antidepressant response and remission.


REFERENCES
  • Al-Karawi D, & Jubair L (2016). Bright light therapy for nonseasonal depression: Metaanalysis of clinical trials. J Affect Disord, 198, 64–71. doi:10.1016/j.jad.2016.03.016 [PubMed] [CrossRef] [Google Scholar]
  • American Psychiatric Association., & American Psychiatric Association. DSM-5 Task Force. (2013). Diagnostic and statistical manual of mental disorders : DSM-5 (5th ed.). Washington, D.C.: American Psychiatric Association. [Google Scholar]
  • American Psychiatric Association., & American Psychiatric Association. Task Force on DSM-IV. (1994). Diagnostic and statistical manual of mental disorders : DSM-IV (4th ed.). Washington, DC: American Psychiatric Association. [Google Scholar]
  • American Psychiatric Association., & American Psychiatric Association. Work Group to Revise DSM-III. (1987). Diagnostic and statistical manual of mental disorders : DSMIII-R (3rd ed.). Washington, DC: American Psychiatric Association. [Google Scholar]
  • Benedetti F, Barbini B, Fulgosi MC, Colombo C, Dallaspezia S, Pontiggia A, & Smeraldi E (2005). Combined total sleep deprivation and light therapy in the treatment of drug-resistant bipolar depression: acute response and long-term remission rates. J Clin Psychiatry, 66(12), 1535–1540. [PubMed] [Google Scholar]
  • Braun DL, Sunday SR, Fornari VM, & Halmi KA (1999). Bright light therapy decreases winter binge frequency in women with bulimia nervosa: a double-blind, placebo-controlled study. Compr Psychiatry, 40(6), 442–448. [PubMed] [Google Scholar]
  • Brown TE, & McMullen WJ Jr. (2001). Attention deficit disorders and sleep/arousal disturbance. Ann N Y Acad Sci, 931, 271–286. [PubMed] [Google Scholar]
  • Center for Environmental Therapeutics. (2016). Retrieved from http://www.cet.org/
  • Colombo C, Lucca A, Benedetti F, Barbini B, Campori E, & Smeraldi E (2000). Total sleep deprivation combined with lithium and light therapy in the treatment of bipolar depression: replication of main effects and interaction. Psychiatry Res, 95(1), 43–53. [PubMed] [Google Scholar]
  • Daansen PJ, & Haffmans J (2010). Reducing symptoms in women with chronic anorexia nervosa. A pilot study on the effects of bright light therapy. Neuro Endocrinol Lett, 31(3), 290–296. [PubMed] [Google Scholar]
  • Dauphinais DR, Rosenthal JZ, Terman M, DiFebo HM, Tuggle C, & Rosenthal NE (2012). Controlled trial of safety and efficacy of bright light therapy vs. negative air ions in patients with bipolar depression. Psychiatry Res, 196(1), 57–61. doi:10.1016/j.psychres.2012.01.015 [PubMed] [CrossRef] [Google Scholar]
  • Deltito JA, Moline M, Pollak C, Martin LY, & Maremmani I (1991). Effects of phototherapy on non-seasonal unipolar and bipolar depressive spectrum disorders. J Affect Disord, 23(4), 231–237. [PubMed] [Google Scholar]
  • Eastman CI, Young MA, Fogg LF, Liu L, & Meaden PM (1998). Bright light treatment of winter depression: a placebo-controlled trial. Arch Gen Psychiatry, 55(10), 883–889. [PubMed] [Google Scholar]

Infographic: What is Red Light Therapy?

Dreaming of Light Therapy

Light therapy is beneficial for more than just one problem. Rather, it’s an all-in-one health and wellness treatment. It helps with skincare issues ranging from acne to wrinkles to eczema by supporting the mitochondria, which in return provokes better cell production within the body and targeted areas. 

But another thing light therapy is proving to be powerful with is sleep. Sleeping disorders are more frequent than ever, with many people experiencing sleep disorders and, if not full disorder, struggle with achieving restful sleep. 

Stress and anxiety build up through the day, and our addiction to our devices greatly disturbs our sleeping habits. However, a good night’s sleep is actually one of the most important things to maintain if you want optimal health.

While there are many types of sleep disorders—insomnia, sleep apnea, restless legs syndrome (RLS), and narcolepsy—bright light therapy has proven to help reduce many of these conditions. In addition, its effects are also being studied on how they can help with Parkinson’s disease. 

Sleep onset insomnia is one of the things light therapy can effectively treat. Insomnia is the inability to fall asleep at a normal time. Though there are various reasons for insomnia, one problem stems from the advanced or delayed circadian rhythms.

There’s also advanced sleep phase disorder when you tend to feel sleepy in the late afternoon or early evening. Bedtime typically happens between 6 p.m. and 9 p.m. Early bedtime means you often wake up between 2 a.m. and 5 a.m. Light therapy here can help reset your internal clock in the early evening hours.

With delayed sleep phase disorder, you tend to stay up all night or at least a few hours, often past midnight. As a result, you also tend to wake up later in the morning, having lost a good chunk of your day. In this instance, light therapy in the morning, right after you’ve woken up, helps to advance your internal clock and makes you feel sleepy earlier in the evening, helping to adjust to a normal sleeping pattern.

And yet, light therapy treatment is proving to be the perfect solution.

In 2012, Light therapy was studied and found to be an effective nonpharmacological and non-invasive way of treating sleep disorders and improving sleep quality among elite female basketball players. Each participant within the research received14-30 minute light therapy sessions once every night for 14 nights in a row.

Research also showed improved melatonin levels among basketball players, and melatonin is a hormone that promotes sleep. Players in return experienced improved endurance performance. 

In later studies as well, light therapy has proved itself to be very effective. In 2013, a Taiwanese study looked at participants and their electroencephalography (EEG), which means they examined their electrical brain activity. They checked before, during, and after the light therapy simulation. The research suggested that light therapy is beneficial in helping people with sleep disorders. But these are the only studies that show the effectiveness of light therapy.

A study on the cognitive function of people with traumatic brain injury discovered that light therapy helped those people with their cognitive function. Light therapy helped decrease episodes of post-traumatic stress disorder (PTSD). Participants also reported better sleep during the study. 

New research from the University of Arizona Health Sciences discovered that with light therapy, people with migraines have a better chance of improving their sleep, plus act as a preventative measure for future migraines. Patients who were submitted to the research experienced better sleep and fewer headaches with light therapy.

Our minds have been occupied with a lot, with the pandemic, with people experiencing more hardships than before. Even if they’ve gotten used to it, the way of living has drastically changed. It’s no surprise that our sleep has also been affected by this. It’s reported that having bad dreams due to the ongoing pandemic isn’t anything too surprising nor impossible. 

Growing evidence suggests that light therapy can help us improve the ability to fall asleep, remain asleep and get a good night’s all in one. In times when our dreams and sleep are invaded by negative feelings related to any upsetting and unsettling occurrence in our life, light therapy can help us ease our daily stressors and might help us avoid sleep-disturbing dreams.

That said, you want the right light therapy device to help you improve your sleep. Kayian medical produces MDA-certified and FDA-approved light therapy devices to ensure you get the most out of light therapy. 

Light & Water: The Fourth Phase

Water has three phases — gas, liquid, and solid; but inside Dr.Pollack’s lab, findings imply the presence of a surprisingly extensive fourth phase that occurs at interfaces. The formal name for this fourth phase is exclusion-zone water, aka EZ water. This finding may have profound implications for chemistry, physics, and biology.

The impact of surfaces on the contiguous aqueous phase is generally thought to extend no more than a few water-molecule layers. However, Dr.Pollack found that colloidal and molecular solutes are profoundly excluded from hydrophilic surfaces' vicinity to distances up to several hundred micrometers. Such large exclusion zones have been observed next to many different hydrophilic surfaces, and many diverse solutes are excluded. Hence, the exclusion phenomenon appears to be quite general.​​

Multiple methods have been applied to test whether the exclusion zone's physical properties differ from those of bulk water. NMR, infrared, and birefringence imaging, as well as measurements of electrical potential, viscosity, and UV-VIS and infrared-absorption spectra, collectively reveal that the solute-free zone is a physically distinct, ordered phase of water. It is much like a liquid crystal. It can co-exist essentially indefinitely with the contiguous solute-containing phase. Indeed, this unexpectedly extensive zone may be a candidate for the long-postulated “fourth phase” of water considered by earlier scientists.​

The energy responsible for building this charged, low entropy zone comes from light. We found that incident radiant energy, including UV, visible, and near-infrared wavelengths, induce exclusion-zone growth in a spectrally sensitive manner. IR is particularly effective. Five-minute radiation exposure at 3.1 µm (corresponding to OH stretch) causes an exclusion-zone-width increase of up to three times. Apparently, incident photons cause some change in bulk water that predisposes constituent molecules to reorganize and build the charged, ordered exclusion zone. How this occurs is under study.​

Photons from ordinary sunlight, then, may have an unexpectedly powerful effect that goes beyond mere heating. It may be that solar energy builds to order and separates charge between the near-surface exclusion zone and the bulk water beyond — the separation effectively creating a battery. This light-induced charge separation resembles the first step of photosynthesis. Indeed, this light-induced action would seem relevant not only for photosynthetic processes but also for all realms of nature involving water and interfaces.​

In conclusion, you can think of water as a battery. It’s excellent to absorb and store energy, and it’s good to transfer that energy from water molecule to water molecule (picture the ripples that happen when you drop a rock in a pond). The water molecules end up moving closer together to stabilize themselves; they become denser and more viscous and store energy in the form of a negative charge. This is EZ water. It’s like a charged battery — it’s carrying that valuable vibrational energy and is ready to deliver it. Using light therapy infrared devices from Kaiyan Medical, you can make your EZ water. The other alternative is to sunbathe naked under the sun, but that can lead you to sunburns, so we suggest our devices.

Creating Your Custom LED Mask

When we talk about skincare, we usually don’t think about customizing skincare products. The options available on the market are produced for the masses rather than for the individual. Many people with multiple skin issues struggle to find skincare products that truly speaks to their needs. However, light therapy masks can be customized to fit the individual customer’s needs.

If you’re working in the skincare industry, light therapy devices are a revolutionary step forward, as you’ll be able to provide your customers with a unique light therapy mask.

But what’s the process of creating a custom light therapy mask? Here are the six steps you need to consider when developing a customized light therapy mask.

The Six Steps to Create Your Custom Led Mask

While going through these six steps, keep your vision of your mask in mind. This will help you answer some of the questions that are going to be asked below.

What’s your Goal?

It would help if you determined your product’s goals. Who are your clients? What are their unique skincare challenges? By understanding the basics, you’ll help your company determine the right strategy when creating your customized product. Light therapy masks can be made using different LED colors for a full range of beauty treatments, including acne reduction, anti-aging treatment, and collagen production.

What Material will you Use?

You need to select the right material. Facial masks can be made from a variety of materials, each with its own advantages and versatility. There are three types of light therapy masks to consider: flexible, semi-hard, and hard.

Flexible allows users to wear it while doing their daily activities. The patented air cushions and emitting SMD LEDs are ideal for indoor and daily skincare. Semi-hard masks are for professional use and have a hard shell, while soft inside. Hard masks are powerful facial masks for professional use and come with selectable light area options. They offer a deeper light therapy experience for clients.

What Kind of Shape will your Mask be in?

Light therapy masks don’t have to come in a traditional one-size-fits-all design. Depending on your target market, you’ll be able to choose where the placement for the cheeks, forehead, and eyes will be on the mask. This gives you more control over how the mask will fit on your client’s face.

What Areas Will your Mask Treat?

A traditional mask will cover the full face. However, you may not necessarily want your mask to provide full coverage. Consider the areas of the face you’d like to treat, as you may only want to create a mask for a specific target area.

Apply for a Prototype

You’ve answered all the questions above and have a vision of how you want your mask to look. From here, we help you take your vision and use our creativity and 14 years of experience in the industry to create a mask that fits your goals.

Launch & Listen

Now that the product is created, it’s time to launch it. Before the launch, we produce pre-pilot quantities that allow us to fine-tune our devices and ensure high-quality from start to finish.

Creating a light therapy facial mask is one thing, but you want to make sure it’s achieving your goals and making your customers happy. Once your product is launched, it’s crucial to monitor product performance and listen to customer feedback.

Naturally, you don’t want your light therapy mask to be like all the others on the market. Our masks are MDA-certified and FDA-approved light therapy devices, ensuring you medical-grade quality devices for your business.


How Light Therapy Enhances Physical Therapy Treatment

Though laser technology started with Albert Einstein, the technology didn’t evolve until the 1960’s when a laser prototype at Hughes Research Laboratories in Malibu, California, was first built. However, its purpose wasn’t for the medical industry; instead, for the military.

It eventually trickled down into Hollywood when Sci-Fi directors realized its potential for visual effects. But, of course, it didn’t take long for other fields to jump on the laser light bandwagon, including the medicine and rehabilitation industries. From there, the medical industry began to understand laser light’s impact on the human body when it came to healing and recovery.

Low-level (light) laser therapy (LLLT) is used to treat various conditions, including pain relief and inflammation. Over the past ten years, research and technological advancements have fine-tuned low-level light therapy, making the treatment highly effective in providing pain relief and healing treatment.

What is Low-Level Laser Light Therapy?

Before we talk about its capabilities, it’s essential to understand how it functions. Low-level laser light therapy is a non-invasive technique that gives the body a low dose of light to stimulate cellular healing. Laser light therapy targets the specific area in need to increase mobility by reducing pain and inflammation.

Low-level laser light therapy works through a process called photobiomodulation. During this process, the light is absorbed by the body’s tissue, where the cells respond with a physiological reaction, promoting cellular regeneration. The light stimulates cellular metabolism to promote cell growth and the healing of damaged cells.

How Laser Light Affects the Body

There are a couple of ways laser light therapy affects the body. Here’s what laser light therapy does for the body:

  1. Light energy is absorbed by melanin, hemoglobin, and water. The energy dissolves into heat, creating a soothing and warm sensation. The warming sensation helps patients feel relaxed.
  2. There’s an increase in ATP production in the mitochondria through light energy, the cell’s powerhouse. With increased ATP production, more energy is available for the healing process.
  3. Light energy aids with the release of nitric oxide, which enhances the circulation of damaged tissue. Increased circulation allows for improved oxygen exchange, nutrient exchange, and waste removal.
  4. Light energy releases crucial chemicals that help reduce inflammation.

So can laser light therapy be used alongside physical therapy? The answer is yes. In fact, the two treatments complement each other perfectly.

The Perfect Pair: Laser Light Therapy and Physical Therapy

With patients experiencing chronic or acute pain, the feeling of pain isn’t the main issue. However, patients can reduce pain and inflammation symptoms through laser light therapy while undergoing physical therapy treatments. Laser light therapy is ideal for pre and post-surgical procedures and during rehabilitation.

Patients undergoing laser light therapy will feel warm and soothing healing sensations as well as an immediate reduction in pain after treatment. By reducing pain, patients will improve their physical therapy performance and reduce their healing time. Ideally, four to six laser light therapy sessions are recommended to patients to receive the best results.

Whether you’re looking to improve your chiropractic, dermatology, medical or physical therapy practice, laser light therapy can provide your patients with the extra care they need to reduce chronic or acute pain and inflammation symptoms.

With many laser light products on the market, you want to make sure you’re investing in a medical-grade laser light device for your practice. Kaiyan Medical manufactures MDA-certified and FDA-approved laser light therapy devices, ideal for various medical and rehabilitation industries.

Private Label Your Dream Light Therapy Product with Kaiyan

Whether you’re a dermatologist, physical therapist, fitness enthusiast or just someone considering integrating light therapy into their practice, you’ve likely heard about the multitude of benefits that these non-invasive yet powerful devices offer. As light therapy continues to gain popularity, more professionals are looking for light therapy devices to level up. 

Naturally, you can purchase professional devices from light therapy companies, but you can also develop a light therapy device that can be customized to fit your individual client’s needs. This is where we, Kaiyan Medical, come in to help guide you through the process of producing your very own private label light therapy products at our state-of-the-art manufacturing facility. 

If you’re interested in creating your own light therapy products, it’s crucial you understand the development process.

The Steps of Private Label Product Development

We want our clients to comprehend the creative and manufacturing process of developing private label light therapy devices. As this is your idea we’re bringing to life, you need to be included every step of the way. Here’s our step-by-step process:

Step 1: Feasibility Study

It’s easy to lose money by investing in a product without understanding user needs. If you don’t know your target audience, you’ll struggle to create a viable product. During the feasibility step, we determine the practicality of your project and examine its strengths and weaknesses. This helps to ensure the idea you want to bring to life is viable and effective in achieving its goal. 

Step 2: Industrial Design

With our advanced conceptual design team, we determine how we can best engage with your target audience. While we focus on design, we also make sure your device fits under the required safety and health regulations. Our in-house design process creates visually appealing, high-quality, and functional concepts for manufacturing and product planning. 

Step 3: Electrical Engineering

Our in-house team has vast experience in lasers, sourcing, prototyping, and LEDs to incorporate these components and masterfully develop your product. Our electrical engineers, who are in charge of this step, take your idea and bring it to life while ensuring high-quality performance. 

Step 4: Rapid Prototyping

Rapid prototyping is essential for our projects and allows the client to see and feel their idea in the palm of their hands. In addition, it also helps clients test products with their users and receive constructive feedback. Our rapid prototyping is completed in-house as we have the capacity to create a range of samples varying from simple to complex, multi-piece models. 

Step 5: Mass Production

After your idea is turned into a tangible product and has been tested, we then plan production with in-house, pre-pilot quantities. By doing so, we’re able to identify production areas that need to be fine-tuned while ensuring high-quality and performance standards. Once these steps are completed, your product will be ready for shipment. Through our vast experience and stellar team, we can ensure a smooth manufacturing process and will guide you each step along the way, from start to finish. 

So, Who do we Work with?

We’ve been creating MDA-certified and FDA-approved light therapy devices for years. That said, we’ve successfully worked with various brands in different industries, taking their ideas and bringing them to life. Here are some of the brands and products we’ve developed.

DemarkQ

DenmarkQ offers skin care devices that use red and blue light LED to target acne and scarring. The LED light uses the body's natural healing process to improve its overall wellbeing. 

Aduro Mask
Established in 2006, Aduro Skincare specializes in LED beauty-related products under a medical license. The product is internationally renowned and clinically proven as an effective, non-invasive therapeutic skin care treatment.

Perfect Countour

Perfect Contour is our line of permanent make-up machines. Our permanent make-up machines were designed for clinical use; however, we feel permanent make-up is more of an art form than a medical procedure through our experience.

Golden Eagles

Teeth whitening has been around for ages, and we've mastered the art of developing effective teeth whitening devices. We currently have over 20 different OEM models for professional whitening and devices for at-home whitening. 

Akstra

Akstra's brand focuses on hair regrowth and hair rejuvenation and offers products ranging from home-use to professional-use models. Since Asktra's first line of hair lasers was made for clinical environments, we opted for a sleek and clean design. 

Lumiceuticals

Lumiceuticals is a brand focusing on using LED technology for pain relief. We combined LED technology with neoprene material for practical treatment pads. The pads are secured by Velcro straps, making them easy-to-use for customers. 

If you’re considering developing private label light therapy devices, at Kaiyan Medical, we create MDA-certified and FDA-approved light therapy devices, ensuring you medical-grade, high-quality devices for your business. We are eager to work with like-minded partners in developing truly effective, safe, and valuable products that tap into the power of light therapy. 

We look forward to working with you!


Why Chiropractors Love Light Therapy

Chiropractors Lead the Way

LED light therapy is not new to the medical industry and certainly not new to doctors of chiropractic.

Studied for decades, the use of low-level light therapy (LLLT) — both LED and laser — has been making its way into the medical mainstream in the U.S. since the 1990s. And chiropractors have taken the lead in the clinical use of LED light therapy and are advancing the use of this technology for new applications.

This is no surprise to industry professionals and medical providers because this technology is a perfect pairing to what chiropractors advocate and bring to the medical community: healthy, drug-free healing and pain management options that are highly efficacious. Compared to the high cost and side-effect spectrum of many pharmaceutical drugs, LED light therapy can be a cost-effective alternative to drugs and surgery.

LED light therapy has the ability to increase blood flow and lymphatic circulation, decrease pain, and stimulate many cellular processes that accelerate healing. Plus, it has a high safety level, no known negative side effects is easy to administer, and is non-invasive.

Because LED light therapy can provide pain relief, wound healing and address neuropathy discomfort and various musculoskeletal issues, it is a mainstay in many clinics. Some patients also purchase light therapy systems from their chiropractors for in-home use between office visits for long-term therapy needs such as chronic pain and neuropathy.

It is also an attractive option for new chiropractors just getting started because it can bring substantial benefits to their patients while offering a fast ROI.

How it Works

LEDs deliver wavelengths of incoherent (diffused) light to the body. LEDs are similar to laser diodes, but their light spreads out, unlike the highly focused beam of coherent light that emits from a laser. This more diffused light makes administration exceptionally safe.

This therapy is also known as photobiomodulation — meaning that light can produce a cellular change in the body. Photons of light stimulate the release of nitric oxide, which

is the body’s natural vasodilator, greatly increasing circulation in the local treatment area. Blood flow is increased to nerves and other tissues, improving tissue oxygenation that stimulates healing. This boost persists for several hours after a therapy session.

Research indicates that the benefits of LED light therapy include

  • Increased circulation
  • Decreased inflammation
  • Increased ATP production
  • Collagen production
  • Accelerated exercise recovery time
  • Increased relaxation
  • Decreased stress

LEDs have low power requirements and high efficiency with minimal heat production. Power levels are measured in mW/cm2 (milliwatts per centimeter squared). And LED lifetimes are rated up to 100,000 hours and can last for decades.

The most common device wavelengths are the following:

  • Near-infrared: Many LED therapy devices use the 800 nanometers (nm) range; however, infrared include a much wider spectrum with deep penetration up to 100 mm.
  • Red: 630 to 700 nm, with penetration up to 10 mm.
  • Blue: 405 to 470 nm, with penetration up to 3 mm (beneficial for skin and wound healing).
  • Pulsed frequency(s) or continuous wave devices provide timed sequences of light turning on and off during application, which is thought to accelerate change in the tissues.
  • Continuous-wave devices are always on; no frequency is added to the light.
Applications for Use

Light therapy is commonly used to treat acute and chronic joint pain in the neck, back, leg, shoulder, wrist, knee, and ankle. It can be helpful for arthritis pain, bruises, carpal tunnel syndrome, and musculoskeletal conditions. It is also used to treat skin conditions such as pressure ulcers, wound healing, and scar tissue reduction.

Even NASA has good things to say about light therapy. NASA issued a news release in December 2000, which stated that doctors at Navy Special Warfare Command centers in Norfolk, Virginia, and San Diego reported a 40 percent improvement in patients who had musculoskeletal training injuries treated with light-emitting diodes.1

There are distinct advantages to using LED therapy devices in your clinical practice. For example, Patients can be left unattended during therapy, maximizing staff resources. Large surface areas can be covered by the LED pad or panel, delivering therapeutic photons broadly and safely to the body's targeted area. And systems are generally portable and user friendly.

Moreover, LED light therapy can help you enter niche markets, such as peripheral neuropathy and brain injuries. These are areas where LED light therapy is appearing to be more effective than pharmaceutical approaches.

Brain injuries

An increasing number of scientific studies show expanded indications for LED light therapy to treat neurologic conditions, especially brain injuries and degeneration. The advanced research being done by Michael Hamblin, Ph.D., and his group and by Margaret A. Naeser, Ph.D., at Boston University demonstrates that LED light therapy can positively affect the brain. Naeser’s 2017 study with veterans showed significant improvement after 12 weeks of transcranial photobiomodulation.

Increased function, better sleep, fewer angry outbursts, and less anxiety and wandering were reported with no negative side effects.2

Preliminary brain studies conducted by other groups using transcranial LED light therapy show impressively improved brain blood flow verified before and after single-photon emission computerized tomography (SPECT) brain scans. These brain studies have implications for patients presenting with such conditions as traumatic brain injury (TBI), PTSD, Alzheimer’s, Parkinson’s, concussions, strokes, and depression.

Nearly all neurological disorders have one thing in common: diminished blood flow. And increased circulation and blood flow are precisely what LED light therapy promotes.

Peripheral Neuropathy

More than 3 million new cases of peripheral neuropathy are diagnosed each year in the U.S. alone. LED light therapy has shown significant results in relieving this condition's discomfort and improving sensation, as evidenced by several studies.

Adding LED light therapy systems can help you offer neuropathy therapy as a substantial part of your practice.

FDA Approved

LED light therapy devices have received FDA clearances that temporarily increase local circulation; and the temporary relief of pain, stiffness, and muscle spasms. Many practitioners are hopeful that the FDA will keep expanding clearances for this cutting-edge healing technology.

References
NASA/Marshall Space Flight Center. “NASA Space Technology Shines Light On Healing.” ScienceDaily. http://www.sciencedaily.com/ releases/2000/12/001219195848.htm. Published Dec. 2000. Accessed Jan. 2018.

Salmarche AE, Naeser MA, Ho KF, Hamblin MR, Lim L. Significant Improvement in Cognition in Mild to Moderately Severe Dementia Cases Treated with Transcranial Plus Intranasal Photobiomodulation:

Case Series Report. Photomed Laser Surg. 2017;5(8):432–441.

Fallah A, Mirzaei A, Gutknecht N, Demneh AS. Clinical effectiveness of low-level

laser treatment on peripheral somatosen- sory neuropathy. Lasers Med Sci. 2017 Apr;32(3):721–728.

Mandelbaum-Livnat MM, Almog M, Nissan M, Loeb E, Shapira Y, Rochkind

Photobiomodulation Triple Treatment in Peripheral Nerve Injury: Nerve and Muscle Response. Photomed Laser Surg. 2016;34(12):638–645.



What Are the Different Types of Clinical Research?

Different types of clinical research are used depending on what the researchers are studying. Below are descriptions of some different kinds of clinical research.

Treatment Research generally involves an intervention such as medication, psychotherapy, new devices, or new approaches to surgery or radiation therapy.

Prevention Research looks for better ways to prevent disorders from developing or returning. Different kinds of prevention research may study medicines, vitamins, vaccines, minerals, or lifestyle changes.

Diagnostic Research refers to the practice of looking for better ways to identify a particular disorder or condition.

Screening Research aims to find the best ways to detect certain disorders or health conditions.

Quality of Life Research explores ways to improve comfort and the quality of life for individuals with a chronic illness.

Genetic studies aim to improve disorders' prediction by identifying and understanding how genes and illnesses may be related. Research in this area may explore how a person’s genes make him or her more or less likely to develop a disorder. This may lead to the development of tailor-made treatments based on a patient’s genetic make-up.

Epidemiological Studies seek to identify the patterns, causes, and control of disorders in groups of people.

An important note: some clinical research is “outpatient,” meaning that participants do not stay overnight at the hospital. Some are “impatient,” meaning that participants will need to stay for at least one night in the hospital or research center. Be sure to ask the researchers what their study requires.

Phases of Clinical Trials: When Clinical Research is Used to Evaluate Medications and Devices
Clinical trials are a kind of clinical research designed to evaluate and test new interventions such as psychotherapy or medications. Clinical trials are often conducted in four phases. The trials at each phase have a different purpose and help scientists answer different questions.

  • Phase I trials
    Researchers test an experimental drug or treatment in a small group of people for the first time. The researchers evaluate the treatment’s safety, determine a safe dosage range, and identify side effects.
  • Phase II trials
    The experimental drug or treatment is given to a larger group of people to see if it is effective and further evaluate its safety.
  • Phase III trials
    The experimental study drug or treatment is given to large groups of people. Researchers confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information to allow the experimental drug or treatment to be used safely.
  • Phase IV trials
    Post-marketing studies, which are conducted after a treatment is approved for use by the FDA, provide additional information, including the treatment or drug’s risks, benefits, and best use.

Examples of Other Kinds of Clinical Research
Many people believe that all clinical research involves testing new medications or devices. This is not true, however. Some studies do not involve testing medications, and a person’s regular medications may not need to be changed. Healthy volunteers are also needed so that researchers can compare their results to the results of people with the illness being studied. Some examples of other kinds of research include the following:

  • A long-term study that involves psychological tests or brain scans
  • A genetic study that involves blood tests but no changes in medication
  • A family history study involves talking to family members to learn about people’s medical needs and history.

Advantages of Medical Device Manufacturing in China Post Covid-19

China’s overall economic recovery in part has been attributed to the strong rebound in the manufacturing sector. The medical device manufacturing sector specifically recorded an astounding 46.4% growth.

High-Quality Human Resources

Despite living in the age of automation, labor remains one of the higher costs of manufacturing. Manufacturing companies in the west have to deal with worker’s unions, paying high wages, and inflexible staffing that cannot readily scale and resize as fluctuating production output needs may require. On the other hand, achieving this flexibility level is easier for Chinese manufacturers due to China’s readily available, efficient workforce. This used to be the primary reason for companies to outsource their manufacturing activities in China.

Manufacturing in China can significantly bring down overall production costs, and a large part of those savings is due to Chinese labor efficiency. Chinese facilities have been optimizing manufacturing costs for decades and have largely achieved very efficient workforce operations. Depending on the labor intensity of product manufacturing activities, a Chinese facility can offer an excellent number of parts produced per work hour spent.

Low Raw Materials Cost

Another most important manufacturing cost is raw materials cost, for which China also provides a cost-effective option, for two main reasons. Firstly, the same labor efficiency condition exists throughout the entire raw materials production value chain. So Chinese manufacturing companies can themselves access cost-efficient raw materials than most companies based in other countries. Secondly, the transfer of materials is cheap since it only happens from close sources and within China. This results in avoiding long shipping routes, additional customs tariffs, and long delivery waiting times. When manufacturers in all industries are trying to cut expenses and maximize profits to remain competitive, access to affordable raw materials can help bring down manufacturing costs to a considerable extent.

Most Chinese manufacturing facilities will typically have low cost local (or close) material suppliers. This way, they gain a significant cost advantage that further contributes to their cost-effectiveness.

Strategic Location

Companies worldwide are nowadays targeting the growing Asian markets, so much so that the phrase “expand to Asia” has become somewhat of a cliché business term. China is the largest of those markets, with its consumer market surpassing $6 trillion in value. Moreover, it also benefits from its proximity to several large and growing markets, such as India and South Korea. In terms of regulatory compliance, medical devices of Chinese manufacturing have no issues in being accepted in both the country’s domestic and other Asian markets. So outsourcing medical device production to China gives manufacturers access to its rapidly growing domestic market, as well as immediate access to its developing neighboring markets.

Evolving Supply Chain Network

In times of market, instability is when a supply chain is a huge determining factor for a manufacturer’s chance for survival. Chinese materials suppliers have been rapidly evolving, following the country's growing trend of becoming an international manufacturing hub. This has made it easier for medical device contract manufacturers to identify and establish a trustworthy network of reliable local suppliers.
This gives the more top tier Chinese manufacturers such as Kaiyan, the opportunity to create resilience in the face of the coronavirus outbreak. Additionally, a robust supply chain allows for a manufacturer’s flexibility to offer simple, efficient, and flexible options for increasing or scaling production as market needs change. What’s also important is that this supply chain evolution has also increased quality standards, which is a decisive factor in medical device manufacturing.

Access to Cutting-edge Technology

Realizing the potential of its market in the era of globalization, China has spent the last decades developing its technology. Heavy investments in research and development, importing talent and technology, and the emergence of specialized tech hubs have helped China gain an innovation edge over other emerging countries. The mentality of rapid research and development is of notable importance and surpasses the speed of many tech hubs in the west. Part of the reason this happens is that such a large portion of the world’s product manufacturing has been outsourced to China. And the low costs achieved by Chinese companies are not the result of just cheap labor, but also, to an extent, involve practical applications of innovative technologies.

Flexible Scale of Manufacturing

Another benefit of manufacturing in China is the ability to scale up or down as needs change. Top tier Chinese factories such as Kaiyan’s facilities are manufacturing products for many companies at the same facility, so they have the means to produce large quantities and adapt according to the market’s and customer’s needs. And being able to scale up easily is an obvious advantage. A critical characteristic of every trade is offering product availability. As you market your medical device to new markets, customers, importers, and distributors, you will be required to increase quantities and ensure timely delivery. Manufacturing your medical device in a Chinese facility that can support scaling up production becomes an obvious advantage.

Clinical Trials for Medical Devices: FDA and the IDE Process

What is a Medical Device?

Section 201(h) of the Food, Drugs, and Cosmetics Act defines a medical device as any healthcare product that does not achieve its principal intended purposes by chemical action or metabolized.

Medical Device Classes
  • Class I — General Controls — Most exempt from premarket submission.
  • Class II — Special Controls — Premarket Notification [510(k)].
  • Class III — Premarket Approval — Require Premarket Application [PMA].
510(k) Premarket Notification
  • Substantial equivalence.
  • 10–15% require clinical data.
  • Performance testing.
  • Usually confirmatory.
  • Type of study dictated by
  • The ability of bench and animal testing to answer questions.
  • Amount of difference between subject device and predicate.
PMA Premarket Approval Application
  • Establish reasonable assurance of safety and effectiveness.
  • Bench-Animal-Human.
  • Clinical Studies.
  • Feasibility and pivotal.
Stages of Review for PMA Device
  1. Pre-Sub: Discuss the device design, bench/animal testing, and the clinical trial
  2. IDE: Request approval for a clinical trial.
  3. PMA: Request market approval.
  4. PMA-S: Request approval for device change or upgrade.

What is an Investigational Device Exemption (IDE)?

The FDA approval of an IDE is required for US human study of a significant risk device that is not approved for the study's indication.

Device trials are unique.

  • Trials tend to be smaller than drug trials.
  • Some novel, many “me-too.”
  • Many difficult to blind, randomize, and control.
  • Many depend on physician technique.
  • Device modifications occur during the trial.
  • Endpoints are highly diverse.
  • Typically, a single pivotal trial follows the feasibility stage(s).
  • Designed to support a “reasonable assurance of safety and effectiveness” for the marketing application.

Types of IDEs

Feasibility Study
  • May provide support for a future pivotal study or may be used to answer basic research questions.
  • Not intended to be the primary support for a marketing application.
  • Endpoints and sample size are generally not statistically driven.
  • Often required by the FDA before the pivotal study to assess basic safety and potential for effectiveness.
  • Generally ~10–40 patients but may be larger.
  • The FDA review is primarily focused on safety and whether the data's potential benefit or value justifies the risk.
Pivotal Study
  • Designed to demonstrate a “reasonable assurance of safety and effectiveness. ness.”
  • Generally intended as the primary clinical support for a marketing application.
  • Endpoints and sample size are statistically driven.
  • Designed to assess both safety and effectiveness.
  • FDA review is much more complex.

Basic Submission Elements

Background of medical issue, the study goals, and why this study will further the science.

A Detailed Description of the Device Understudy
  • Previous studies (preclinical and clinical).
  • Summary of available data.
  • Why is a clinical study needed at this stage?
  • What evidence supports this study/device's safety and the study data's potential to be meaningful?
  • Are there outstanding safety questions that should be addressed with preclinical data?
Risk analysis

Should include:

  • What are the potential risks to the patient?
  • Does the study mitigate the risks where possible?
  • Are the risks outweighed by the potential for benefit and/or value of the study?
  • Patient monitoring and follow-up plan.
  • Inclusion and exclusion criteria.
  • Informed consent document.
  • Sample size and the number of investigational centers, with justification.

Submission Elements, Pivotal IDEs

Primary and Secondary Endpoints

Discussion of the appropriateness of endpoint parameters, hypotheses, and success criteria

Basic Trial Design
  • Controlled? If not, why not?
  •   Randomized? If not, why not?
  •   Blinded? If not, why not?
Trial Conduct and Study Monitoring
  • Sponsor blinding
  • Data handling and adjudication process
  • Independent committees
  • Case report forms
  • Is the right information being gathered to support the study endpoints, and are investigators adequately prompted to report adverse events?

Primary Endpoint Design

Should evaluate the safety and effectiveness of the device in the population expected to be indicated.

  • Generally divided into 1 or more “safety” endpoints and 1 or more “effectiveness” endpoints.
  • A study will be considered successful if both the safety and effectiveness endpoints are met.
  • The clinical protocol should clearly and prospectively detail: — Methods for obtaining endpoint data — Definitions for what will be counted as a primary event in the analysis — Situations in which patient data will be excluded — How missing data will be handled — How the impact of covariates will be assessed.

Sample Size & Follow-Up

Driven by either:

  • Primary safety endpoint
  • Primary effectiveness endpoint

The minimum number of patients and/or minimum duration of follow-up may be required depending on:

  • Understanding of the device's safety and effectiveness  
  • concerns regarding the durability of device safety or effectiveness.

Secondary Endpoints

Generally used to evaluate additional meaningful claims.

  • Generally only considered if primary endpoints are successful.
  • It should be used to provide further insight into the device's effects and mechanisms of action.
  • Definitions and analysis methods should be clearly detailed prospectively.
  • Not considered “statistically significant” unless a pre-specified alpha allocation plan is in the protocol, even if the p-value is < 0.05.

FDA’s IDE Review Decisions

  1. Approval — Approves the trial for a specified number of patients and investigational centers.
  2. Approval with Conditions — Allows sponsor to begin the trial if the sponsor agrees to address the conditions (deficiencies) from the conditional approval letter within 45 days.
  3. Disapproval — The trial may not start until the sponsor addresses the letter's deficiencies, submits this information to the FDA, and receives approval.

Conclusions

One size does not fit all for device trials. Pivotal studies should be designed to evaluate whether there is a “reasonable assurance of safety and effectiveness.” PMA approbation is based upon a Benefit-Risk assessment that strongly considers the outcome of primary safety and effectiveness endpoints. Secondary endpoints are generally used to support claims if the primary endpoints are successful. All endpoint analyses and definitions should be clearly pre-specified in the approved clinical protocol.

Insomnia & the Dark Side of the Blue Light

Although it is environmentally friendly, blue light can affect your sleep and potentially cause disease. Until the advent of artificial lighting, the sun was the major lighting source, and people spent their evenings in (relative) darkness. Now, in much of the world, evenings are illuminated, and we take our easy access to all those lumens pretty much for granted.

But we may be paying the price for basking in all that light. At night, light throws the body’s biological clock — the circadian rhythm — out of whack. Sleep suffers. Worse, research shows that it may contribute to the causation of cancer, diabetes, heart disease, and obesity.

What is Blue Light?

Not all colors of light have the same effect. Blue wavelengths — which are beneficial during daylight hours because they boost attention, reaction times, and mood — seem to be the most disruptive at night. And the proliferation of electronics with screens and energy-efficient lighting increases our exposure to blue wavelengths, especially after sundown.

Light and Sleep

Everyone has slightly different circadian rhythms, but the average length is 24 and one-quarter hours. The circadian rhythm of people who stay up late is slightly longer, while earlier birds' rhythms fall short of 24 hours. Dr. Charles Czeisler of Harvard Medical School showed, in 1981, that daylight keeps a person’s internal clock aligned with the environment.

Is Nighttime Light Exposure Bad?

Some studies suggest a link between exposure to light at night, such as working the night shift, diabetes, heart disease, and obesity. That’s not proof that nighttime light exposure causes these conditions, nor is it clear why it could be bad for us.

A Harvard study shed a little bit of light on the possible connection to diabetes and possibly obesity. The researchers put 10 people on a schedule that gradually shifted the timing of their circadian rhythms. Their blood sugar levels increased, throwing them into a prediabetic state, and leptin levels, a hormone that leaves people feeling full after a meal, went down.

Exposure to light suppresses the secretion of melatonin, a hormone that influences circadian rhythms. Even dim light can interfere with a person’s circadian rhythm and melatonin secretion. A mere eight lux — a level of brightness exceeded by most table lamps and about twice that of a night light — effects, notes Stephen Lockley, a Harvard sleep researcher. Light at night is part of the reason so many people don’t get enough sleep, says Lockley, and researchers have linked short sleep to increased risk for depression, as well as diabetes and cardiovascular problems.

Effects of Blue Light and Sleep

While light of any kind can suppress melatonin's secretion, blue light at night does so more powerfully. Harvard researchers and their colleagues experimented comparing the effects of 6.5 hours of exposure to blue light to exposure to green light of comparable brightness. The blue light suppressed melatonin for about twice as long as the green light and shifted circadian rhythms by twice as much (3 hours vs. 1.5 hours).

In another blue light study, researchers at the University of Toronto compared the melatonin levels of people exposed to bright indoor light wearing blue-light-blocking goggles to people exposed to regular dim light without wearing goggles. The fact that the hormone levels were about the same in the two groups strengthens the hypothesis that blue light is a potent suppressor of melatonin. It also suggests that shift workers and night owls could protect themselves if they wore eyewear that blocks blue light. Inexpensive sunglasses with orange-tinted lenses block blue light, but they also block other colors, so they’re not suitable for use indoors at night. Glasses that block out only blue light can cost up to $80.

LED Blue Light Exposure

If blue light does have adverse health effects, then environmental concerns, and the quest for energy-efficient lighting, could be at odds with personal health. Those curlicue compact fluorescent lightbulbs and LED lights are much more energy-efficient than the old-fashioned incandescent lightbulbs we grew up with. But they also tend to produce more blue light.

The physics of fluorescent lights can’t be changed, but coatings inside the bulbs can produce a warmer, less blue light. LED lights are more efficient than fluorescent lights, but they also produce a fair amount of light in the blue spectrum. Richard Hansler, a light researcher at John Carroll University in Cleveland, notes that ordinary incandescent lights also produce some blue light, although less than most fluorescent lightbulbs.

Protect Yourself from Blue Light at Night
  • Use any of our red light devices for night lights. Red light is less likely to shift circadian rhythm and suppress melatonin.
  • Avoid looking at bright screens beginning two to three hours before bed.
  • If you work a night shift or use many electronic devices at night, consider wearing blue-blocking glasses or installing an app that filters the blue/green wavelength at night.
  • Expose yourself to lots of bright light during the day, which will boost your ability to sleep at night, as well as your mood and alertness during daylight.

50% Greater Growth in Muscles with Red Light Therapy

One study randomly divided participants into two separate groups for an 8-week training program. One group received a red light treatment before every training session, while the other group did the same training without the light treatment. They found that the group receiving the light therapy improved muscle growth 50% greater than those with muscle training alone. Pretty amazing, right?

Another randomized, double-blind, placebo-controlled study using red and infrared light on the biceps demonstrated peak and average performance of more than 12% more than the control group. But while this is all very interesting, I’m sure you’re wondering whether Red Light Therapy is worth it and what it can do for YOU. First of all, I’m sure many of you appreciate the science breakdown, but some of you may not be able to follow, so here’s a simple explanation.

Scientists have discovered that our cells show an incredible response to light, but not just any light. Only in the 660–850 nanometer (nm) range which is the so-called red light range. This type of light energy penetrates deep into the skin, muscle, and joint tissue and stimulates ATP production, which you should think of as your body’s way of transporting energy to where it needs to go. More ATP means more efficient energy transfers in layman's terms, which translates to various benefits at a cellular level.

So, by exposing our body to the therapeutic red light, our cells receive this rejuvenating, anti-aging energy boost that enables them to perform every single function at a heightened level and now that you understand the science behind it, let’s a look at the 5 reasons why it might be a good idea for you to invest in this technology.

Increased Energy & Testosterone

Sometimes we feel lethargic and out of energy, like our body is constantly running on empty. Then you spend some time outside on a nice hot summer day, and you all of a sudden feel amazing? It’s because our bodies rely on light as a source of energy, helping our glands to regulate adrenaline, testosterone, metabolism, and several other functions, and it has been shown that Red Light Therapy can increase testosterone production, which in turn can increase overall energy levels and even improve peak muscle performance.

Reduced Muscle Recovery Time

After a challenging workout, your body works around the clock to repair and strengthen torn muscle fibers. We know this. We also know that nutrition plays a huge role in providing the body with the resources it needs for this process. But what most of you don’t know is that specific wavelengths of light play a role in this process. By enhancing mitochondrial function, red light has been proven to produce measurable gains in peak strength and reduced recovery times.

Faster Healing For Joint & Muscle Injuries

Injuries, repetitive motion, or aging, in general, can lead to severe joint pain and tissue damage. But the body’s natural healing response can be greatly accelerated by red and infrared light. Also, relief from pain, faster recovery times, and reduced arthritis symptoms are just a few more of Red Light Therapy's benefits. For bodybuilders, yes, Red Light is also great for reducing Delayed Onset Muscle Soreness or DOMS. After all, it’s a type of muscle tissue injury as well.

Healthier & Younger-Looking Skin

Red Light Therapy can improve skin clarity, tone, and texture, reduce fine lines, wrinkles, and puffy eyes, help fade scars, acne, and stretch marks, even enhance wound healing and circulation, simply by increasing the production of collagen and elastin.

Remember, collagen is a long-chain amino acid and the most abundant protein in the body. It’s responsible for giving skin its elasticity, hair its strength, and connective tissue its ability to hold everything in place. In fact, the collagen protein makes up 30% of the total protein in the body and 70% of the protein in the skin!

Now while collagen is beneficial to the entire body, it’s most noticeably beneficial to the skin. This is because as we age, the epidermic (or outer layer of skin) thins and loses elasticity in a process known as elastosis. As this happens, we tend to show more aging signs and acquire more wrinkles and stretch marks. But by restoring normal cellular function, because red light stimulates collagen production, red light therapy can help keep your skin looking healthier and younger for LONGER.

Stress Relief

You can’t argue that our minds and body are under constant stress because of our busy lives. Well, Red Light Therapy has been proven to calm our physical and mental state by reducing oxidative stress. Now, I cannot personally attest to that, simply because my stress is through the roof, and other times, I get my mind right and relax, but it makes sense. Oxidative stress is not just harmful to our physical health but also our mental state as well.


Preparing your Skin for Light Therapy

Can I Use Serum With LED Mask?

It is a question that many people have asked — Can I use the serum with LED light therapy?

Our skin is exposed to harsh environmental factors such as sun, wind, cold, and dust daily. These factors tend to attack our immune system causing it to weaken over time.

When this happens, it allows harmful viruses and bacteria to attack our body, leading to acne breakouts and other skin issues such as dark spots and wrinkles. Acne creams are one way of reducing the symptoms associated with this skin condition. However, these can be irritating to your skin, resulting in unwanted side effects such as redness, irritation, and dryness.

The same can also be said for light therapy, which can have its own side effects. Side effects of LED light therapy include itching, burning, and pain. In fact, most users had reported experiencing these side effects when they first started using LED technology. If you were to use any acne medication type, whether prescribed by your doctor or over the counter, the results would depend largely on the person using the medication.

For example, it could take anything from a few days to a few weeks for acne to clear up. Another point to remember is that while certain medications do show better results for some people, they may not work for you at all.

This is because everyone has different skin types, responds differently to treatments, and requires different times to clear away acne completely.

Some people have found success in using LED therapy with a variety of skin creams. However, there is a downside to using this method. LED light therapy does not help remove excess dead skin cells, as some acne medications do. This means that the acne cream will just be left in place and continue to produce side effects for all patients. Besides, side effects can be more severe than a single acne medication dose when used over a long time when used over a long time.

Before you try to use a serum with an LED mask, you should consult with a dermatologist who can advise you on whether or not LED light therapy is right for you. LED light therapy is safe when administered by a certified medical professional. It can be used safely, even if you have sensitive skin, as long as you choose your doctors wisely. Before any treatment is begun, the medical professional will test your skin to determine what type of acne you have. Testing will determine whether your skin is allergic to any light-emitting diodes in the device used.

The last question to answer is, “How effective is Acne treatment with LED Light?” To answer this question, you will need to look at the results you get from the treatment. If you see immediate results after the treatment, it will likely react to the device's light and not the treatment itself.

However, if you don’t see good results after a month of continuous treatment, it is important to determine why the treatment is not working. It may be that you are allergic to any of the ingredients in the product, or it may be that your skin is not receptive to the treatment.

Hydrated Face For LED Mask Results

The serum is good for hydrated face for LED Mask. It can hydrate the skin by absorbing moisture, providing a slight lift to the skin, and removing any oil or makeup that you are using. The serum also contains vitamins and antioxidants that will help fight against free radicals in your body. Free radicals are harmful agents that have been linked with causing cancer.

By fighting against these harmful agents, Serum is good for hydrated face for LED Mask. People who have used Serum have claimed that the hydrated face and LED Mask work very well together. I have also used Serum on my skin, and I must say that the results were really amazing. In fact, I would go on to say that Serum is so good for hydrated face for LED Mask that I will be using it every single night before bed.

If you don’t have much experience making skin look hydrated, this is the forum for you. Let us first examine the ingredient list of Serum.

This product's main ingredients are Hyaluronic Acid, Vitamin C, Retinol A, Alpha Hydroxy Acids, Vitamin E, DMAE, Peptides, and Glycerin, Ferulic Acid, Aloe Vera.

  • AHA kills the bacteria causing acne and helps to get rid of blackheads.
  • Sodium Laureth Sulfate helps in cleaning the skin by getting rid of dead skin cells and excess oil.
  • Salicylic Acid gets rid of pimples and acne scars, and Glycolic Acid is good in treating acne scars.

All of these ingredients are perfectly good for your hydrated face for LED Mask.

  • Now let us move on to how does Serum works to get rid of the facial puffiness.
  • When you are applying Serum on your hydrated face for LED Mask, you are putting on a layer of serum to the surface of your face.
  • As the serum gets applied, it works its way down into your skin and starts working as a moisturizer.
  • This is why this particular product is top-rated as it works as a good moisturizer without over-drying the skin.
How to Prepare Your Skin For a Red Light Therapy Session?

There are different methods used to prepare your skin, but essentially they all work in the same way: removing all the oil and dirt from the skin and then cleaning it. When I talk about cleansing, I’m talking about daily skincare maintenance products. If you want to know how to prepare your skin for a red light therapy session, this is the part that you need to read.

Most people have no idea how their skin looks like, so when they go into the doctor’s office and they've asked if they’ve had a photodynamic therapy or a laser treatment, they’re not aware of what treatment they might have received.

  • The skin absorbs red light from the sun, and in return, it produces negative ions.
  • These are similar to the particles produced by an activated oxygen generator (you know those things at the gym).
  • During photodynamic therapy, the skin cells absorb the energy from the lasers' red light, which causes the release of more negative ions, which then penetrate deeper into the skin.
  • They’re working like the “batteries” on your car — they give the batteries extra power and allow the car to run much longer.
  • If you want to learn how to prepare your skin for a red light therapy session, you must remove all the grime from your face and neck before the session.
  • Cleansing is one of the most important steps to remember in preparation.
How to Prepare Your Skin for Red Light Therapy Session by Using Non-Dry Cleanser

You might need more than just a good cleanser when trying to prepare your skin for red light therapy. Your cleanser is your friend when you are trying to remove all the dirt and excess oil from your face, but what if your cleanser is too harsh on your skin? If you have dry skin, using a cleanser containing too harsh ingredients may cause dryness, making it harder for you to remove those excess oils from your face.

When you prepare your skin for red light therapy session using the non-drying cleanser, make sure that you would be using a toner with antioxidants and anti-inflammatory ingredients to increase the collagen level the skin.

This will help keep your skin healthy and younger-looking.

Caution: Lotion and Moisturizers For LED Masks Are Not Recommended

The use of moisturizers and lotions is not recommended for LED masks because it will damage your skin. There are also cases wherein people who used such products ended up suffering from adverse effects.

The ingredients in these products may be too strong for the skin to be able to absorb.

You can prevent this by using only non-comedogenic lotions and moisturizers for LED masks.

  • This way, the product is less likely to irritate your skin. In addition to that, you can also use other types of products designed for sensitive or dry skins to use on your face during the event's preparation.
  • However, there are cases wherein people who have been using such moisturizers and lotions as part of their LED facial make-up mask ended up suffering from adverse effects.
  • In these cases, the products were not properly applied to the skin, and the amount that was applied was also insufficient.
  • Because the skin did not get sufficient moisture, the cells underneath the skin's surface could not repair themselves properly.
  • This will result in damaged skin, which will cause more breakouts than before.

Aside from lotion and moisturizers, it would help if you also stayed away from mineral oil, alcohol, and preservatives. These ingredients are not good for your skin, as they can cause dryness and irritation. It would help if you also stayed away from using creams and lotions with fragrance, which can only irritate your skin even more. Instead, look for serums.

If you want to have a glowing complexion without enduring any adverse effects, use a good quality face serum.

Prepare Your Skin For Red Light Therapy by Removing Sunscreen

You probably have heard that it is unsafe to use the sun’s UV rays at home, especially if you use a tanning lotion or a self-tanning lotion. But did you know that it is also not safe to use self-tanning products like tan accelerators and sunless tanning pills to prepare your skin for red light therapy sessions?

This defeats the purpose of using red light therapy, and you must remove sunscreen so that your face and skin are completely ready to receive the red light therapy. This is because self-tanning products contain ingredients that can affect the skin in adverse ways and block the beneficial deep penetrating infrared wavelength from 650nm to 850nm.

How to Prepare Your Skin For Red Light Therapy by Removing Makeup

If you have chosen to have laser acne treatment and you are wondering how to prepare your skin for the red light therapy, you will want to take a moment to learn how red light therapy works before getting started.

Before your session begins, you will be given a short amount of time to get ready for the procedure. This is because your skin needs to be very clean and free of any makeup. Your skin needs to be completely dry before the procedure can begin.

If there is any moisturizer on your skin when you arrive for your appointment, you will have to remove it before your treatment.

Your doctor will ask you several questions about your skin during your appointment, including what type of skin you have and whether or not you have any allergies. During this time, they will also determine if you are a good candidate for the procedure. If you are cleared for the procedure, your skin will be exposed to an intense red light level. This is one of the most effective ways to get rid of acne, and it can also help prevent scars and aging from occurring on your face.

The amount of time that it takes to get your skin prepared for red light therapy varies. In most cases, it is normal to have it take from fifteen to thirty minutes to prepare your skin for the procedure. You may have to remove any makeup at this time as well.

How to Prepare Your Skin For Red Light Therapy by Exfoliating?

When a patient is getting a therapy session done, they will be required to go to the spa or beauty clinic to be given a facial.

A therapist will then start by cleaning the face thoroughly. After the initial cleaning process, the therapist will apply a chemical that will help exfoliate the skin.

This process can irritate the skin, so it is important to prepare your skin before undergoing this procedure. Some common preparations that people use include salicylic acid, alpha hydroxy acid, retinoids, glycolic acid, and other peel-type products.

The exfoliating procedure aims to help the skin cells shed off dead skin cells and replace them with new cells.

This is why it is important to remove all traces of dead skin cells from your face before undergoing the procedure.

It may seem odd at first, but if you want to get the best results from the procedure, you need to gently exfoliate your skin.

Prepare Your Skin For Red Light Therapy With Moisturizers

When you prepare your skin for red light therapy, you are basically preparing to expose the blue spectrum laser's high intensity and the eventual dry out of the epidermis. The skin must be prepared using a good cream containing Reductase or Salicylic Acid, or by exfoliating the skin using a scrub.

After the procedure, you will need to have topical products applied to your skin to prevent the skin from cracking and peeling. This will also help improve your appearance and prevent future scarring. Removing moisturizers before the therapy can be helpful. This is because the skin’s cells will still be in a dormant state when you receive the treatment; therefore, your skin is not at risk for the dryness associated with moisturizers.

This will also improve your skin's look, especially for those who have undergone this procedure many times. However, you must be youthful if e to remove moisturizers in preparation for the session, as some creams may cause excessive dryness and irritation. Once you are prepared for the session, you can expect the doctor to start the red light therapy by generating a small amount of blue light on your skin's top layer.

The light then travels through the skin, reaching the deepest layers where most of the damage occurs. When the blue light is emitted, it is believed that the cells below the surface of the skin begin to absorb the red light, helping to repair the skin. The increased circulation and nutrient absorption help to rejuvenate your skin, leaving it looking younger and healthier than ever before.


Sinus Infections & Low-level Laser Therapy

Sinus infections are inflammation based. Sinusitis is when inflammation is chronic, and the body is unable to overcome it. Sinusitis or sinus infections may be acute (coming on suddenly) or chronic (long-lasting & nothing seems to fix it.

There are sinus cavities above the eyebrows, behind the nose, and under the cheekbones. When the mucus membranes within the sinuses become inflamed, mucus is generated. Sometimes even air is trapped, which puts pressure on the walls of the sinus cavities, making our face hurt, causing difficulty in breathing thru the nose — this is called sinusitis.

Studies have shown that 37 million people per year in the US are affected with sinusitis at one time or another involving all age brackets.

Is There a Natural, Safer Treatment Option?

Some people immediately run to a doctor wanting antibiotics, which may not help since not all sinusitis is due to bacteria. Low-level laser therapy (LLLT) has been proven effective in enabling the body to overcome inflammation. Many of our patients find that when they use low light Laser Therapy to treat their sinus infections, they experience two things: First — patients notice a significant difference after 1 treatment (breathing easier and sinus drainage); Second — they are less likely to get recurring infections, as is often the case when taking antibiotics.

Irradiation of red light penetrates several millimeters into tissue; in the infrared part of the spectrum, the penetration goes up to several centimeters, usually 4–6 cm. This is a very advantageous fact for treating sinusitis, for laser irradiation can be applied externally. However, when applying a red laser, it is necessary to introduce a light guide in the sinus.

Laser therapy is a safe, painless, non-invasive, and effective therapy to reduce pain and swelling, allowing the body to restore damaged tissue. Laser therapy uses red and infrared light to relieve pain and accelerate healing and decrease inflammation. When the light source is placed against the skin, the photons penetrate several centimeters and get absorbed by the mitochondria, the cell’s energy-producing cells part. This energy fuels many positive physiological responses resulting in the restoration of normal cell function. Laser therapy offers our bodies the opportunity to heal with no side effects and no long term damage.

Long Term/Cumulative Effects of Laser Therapy:

  • Improved resistance to infections
  • The immune response is stimulated
  • Reduction in swelling
  • Lymphatic drainage is improved
  • The body’s natural healing process is enhanced

LLLT irradiation is a benefit for the treatment of acute sinusitis. External irradiation with a laser with 830 nm wavelength, enabling the beam to penetrate 4–6 cm deep, is recommended. Irradiation with red light-emitting lasers is also effective. Still, due to the need for application through a light guide inserted into the cavity, this method has been discarded from clinical practice.

Laser irradiation works through its analgesic, anti-inflammatory, and biostimulation effects on ease of pain or elimination. It also causes a quicker withdrawal of inflammation and edema of the mucosa. It thus brings restoration of drainage of sines as well as normalization of mucociliary function. Immunomodulatory effect — improvement of both specific and non-specific immunities by stimulation of T and B lymphocytes, lysozyme, and phagocytosis — is also significant. Stimulation of Langerhans cells of the mucose of sines is presumed, too.

Laser irradiation in treating sinusitis has no contraindications (except for general contraindications, i.e., malignant tumors in the irradiation area or epilepsy). As physiotherapy, it can suitably complement therapy with antibiotics, mucolytics, and antihistaminics. The use of a laser with 830 nm wavelength appears to be the most beneficiary on diagnosis sinusitis acute with liquid levels in paranasal sinuses, the treatment of which was cut down by 59 percent in average, and on a group of patients with plain catarrhal obscure and decreased transparency (the most frequent) where the duration of therapy was shortened by 39 percent.

By using red light therapy devices from Kaiyan Medical, you’re able to reduce sinus inflammation and improve your immune system by investing a few minutes using a red light device.

With Autoimmunity on the Rise, Light Therapy is Here to Aid in Prevention and Treatment

The medical industry has taken great strides in helping to improve our understanding of the human body. We’ve found an effective treatment for Hepatitis C, eradicated smallpox and rinderpest, and are working on treatments to cure cancer. No one can say we haven’t been successful in the medical world, particularly with the help of incredible research and technology. 

However, there is one family of disease that continues to be somewhat of a mystery in the medical world. And while it’s being highly studied, more and more people are being diagnosed with it. 

What’s the mystery disease? It’s autoimmunity. 

Now, autoimmune diseases can vary greatly, as it's an umbrella term for many autoimmune-based disorders. However, they all have one common thread, in that the body's natural defense system cannot tell the difference between your own cells and foreign cells. This causes the body to attack its own cells healthy unknowingly. 

Under the term "autoimmune diseases," there are around 80 different types that affect various parts of the body, with some of the most common forms manifesting as celiac, IBS, multiple sclerosis, and rheumatoid arthritis.  

The symptoms of autoimmune diseases aren’t pleasant ones by any means. However, they do range depending on the specific condition. Many people with an autoimmune disease experience multiple symptoms such as severe inflammation, joint and pain swelling; as well as skin conditions, recurring fever, swollen glands, and digestive issues. 

Though we know the symptoms of autoimmune diseases, the underlying cause can be difficult to determine for patients – exact cause of autoimmune disorders is unknown. 

More importantly, autoimmune disorder cases are rising. A study published this year showed a staggering rise in autoimmunity in the U.S., particularly in the rate of people testing positive for antinuclear antibodies (ANA), the most common marker of autoimmunity. Over the course of 25 years, the researchers found an overall 50 percent increase. That is astounding. 

Even though we understand these diseases are increasing, we don't know why.

But there is more and more evidence that the balance of microbiome in our guts plays a significant role. Having a diverse range of microbes positively influences our immune systems. People living in developed countries have higher rates of autoimmune diseases due to our less microbially environments. In other words, we're inside more, overuse antibiotics, live with chronic stress, and have poor diets. Not a great combination for a long and healthy life. 

Autoimmune disorders are a reflection of the unhealthy environment we've created for ourselves. We're overworked, stressed, and not supplying our bodies with the proper nutrients. Of course, a lifestyle change is necessary to reduce autoimmune disorders cases and symptoms. But there's another thing you can do to help yourself, and that's by undergoing at-home light therapy treatment

First, light therapy helps to improve immune cells, which is crucial for those with autoimmune disorders. When undergoing red light therapy, cells respond to the wavelengths. Pro-inflammatory cytokine TNF-α is released from the cells, and leukocytes (white blood cells) can enter the body's tissue to promote healing. In addition, red light therapy aids in activating lymphocytes, which increases the movement of epithelial cells, thus healing wounded areas quickly and increasing cell turnover rates. 

But there are other symptoms red light therapy focuses on, and it's joint pain and inflammation. For people who have rheumatoid arthritis, fibromyalgia, and other autoimmune diseases, inflammation and pain are a daily struggle. One study found that light therapy significantly improved inflammatory cells during both the early and late stages of Rheumatoid arthritis. 

By using Lunas’ red light therapy devices, you’re able to tackle multiple symptoms of autoimmune disease, reduce your stress levels, and improve your immune system by investing a few minutes sitting or standing in front of your red light device.

Celebs are Loving Red Light Therapy

When it comes to anti-aging remedies, celebrities are at the forefront of all the latest treatments. For years, Hollywood’s elite have opted for chemically-induced anti-aging treatments, like botox and chemical facial peels. But it looks like Hollywood is stepping away from harsh treatments, particularly with the prominence of clean and holistic beauty trends in recent years. Now, many celebrities have decided to avoid the needles and knives, opting for natural alternatives, instead. 

To prepare for red carpet events, celebrities are flocking to red light therapy for natural, non-invasive anti-aging treatments. Kourtney Kardashian, true to Kardashian form, was relatively early to the red light therapy scene in 2016, when she posted a photo of herself in wearing a red-light mask, touting the many anti-aging benefits of the treatment. Since then, other celebrities such as Kelly Rowland, Emma Stone, and Chrissy Teigen have openly shared their positive experiences using red and blue light facial therapy treatment. 

Some actresses love red light therapy so much, they have their own equipment set-up in their homes. Back in 2018, Olivia Munn told US, "I have my own facial set up, I've got the professional-grade products and machines...But one of the best things is the red and blue light mask."

Red light therapy works by increasing blood flow and oxygen, feeding the cells the necessary energy they need to speed up the cellular process. This process helps decrease inflammation and enhance collagen production, which reduces the appearance of fine lines and wrinkles for tighter and supple skin. 

Jewelry designer and reality T.V. star Kristin Cavallari told US that she keeps away from Botox, but shared that

"I use red light therapy twice a week to prevent lines and wrinkles."

But red light therapy isn’t only for wrinkles and fine lines. Celebrities are expanding the use of red light therapy and using it for their entire bodies. Why? Well, house-friendly red light devices help treat inflammation, joint pain, and muscle soreness. 

Ara Suppiah, M.D., an assistant professor at the University of Central Florida Medical School and an emergency and sports medicine physician, told Us Weekly that “increased energy within a muscle cell allows it to contract harder and repair itself after training.” Since red light increases cell energy, it subsequently helps organs, joints, and muscles to repair themselves and function optimally. 

The list of celebrities who swear by red light therapy continues to grow by the day. Joan Smalls and Bella Hadid visit celeb aesthetician Joanna Czech, who is well-known for using her light treatments on her clients. Riverdale’s Lili Reinhart and Camila Mendes also posted photos from Joanna Vargas’ red light bed.

So, it’s clear that the verdict is in: celebrities are loving red light therapy and the multiple external and internal benefits that come along with it. But do you need to undergo expensive treatments to get a taste of the benefits? Nope! You don’t need to be a celebrity status to enjoy the benefits of red light therapy - even in the comfort of your home. 

Luckily, red light therapy is now available for in-home treatment with Lunas’ FDA and MDA-approved red light therapy devices. By having a red light therapy device in your home, we can all attain our own red-carpet glow without the celebrity price tag.

Photo Credit: By Tinseltown - Shutterstock

How to Integrate Light Therapy into your Lifestyle

Our lives are busier than ever, and even though red light therapy sounds like something that could significantly benefit you, we know you might be thinking: “when will I have time for red light therapy?” 

Part of the beauty of red light therapy is that you don't need to change your current routine or lifestyle to enjoy its benefits: if you're someone whose day is busy in front of a desk, you can turn the device on while you work; or if you have easy-going mornings but hectic afternoons, you can enjoy your morning coffee while using our red light therapy device. Or, you can turn on the panel while you’re unwinding with a movie in the evenings –– the options are endless.  

Red light therapy treatment isn’t supposed to take over your day and cause an inconvenience. With an at-home red light therapy device, you make the rules. 

That said, you may be wondering what’s the best time of day to use our red light therapy devices. Well, there are a couple of ways you can integrate red light therapy into your lifestyle. 

There are three main parts of the day: morning, midday, and evening. Though you’re able to use red light therapy any time of the day, some parts of the day can be more effective than others, particularly given your personal health and wellness needs. 

If you’re someone who’s suffering from a sleep disorder, then you may want to focus on using red light therapy during the mornings and evenings. For sleep conditions, using red light therapy around sunrise or sunset are the best times of the day. Why is that? 

It has to do with our biological circadian rhythm, which is the natural internal process that helps regulate your sleep cycle within a 24-hour day. To optimize your circadian rhythm and improve your sleep cycle, you need to sync with your natural sleep rhythm. By doing so, you reduce sleep inertia, insomnia, and other sleep disorders. 

When regulating your circadian cycle, your body releases a hormone called melatonin. This particular hormone is the highest in the blood at night and optimal for helping you fall asleep. When using red light therapy at night, it can help you enhance your natural melatonin production

When using red light therapy in the morning, exposure to light helps stop melatonin production, giving your body a natural energy boost. So, either time of the day––morning or night––can be an incredible time to help your body reset its circadian rhythm. 

You don’t need to schedule off your morning for red light therapy treatment. While you’re eating your breakfast or going through your emails, you simply turn on your red light therapy device and enjoy 10 to 15 minutes of treatment. 

Or, in the evenings when you’re cozied up on the course, washing the dishes, or sitting in bed with a book, turn on your red light therapy panel to help regulate your sleep cycle, mood, and overall health. 

If you can’t manage to use red light therapy in the morning or evening, you can always have a treatment in the afternoon, as well. If you’re dealing with a sleep disorder or seasonal depression, we recommend morning or evening treatment. However, midday treatment will also provide you with a load of benefits, including collagen production, decreasing symptoms of depression, improving sleep disorders, and non-seasonal Bipolar depressive episodes. 

Whatever the condition may be, whether it's a sleeping disorder, skin condition, or depression, Lunas red light therapy devices promote cellular healing from the inside out. What’s important is you find the time of the day that best suits your body’s needs. Everyone is different, so it’s important to find out what works for you and your unique routine and lifestyle.

Light Therapy and Orthopedic Surgery

At some point in most of our lives, we’re all going to encounter a visit with an orthopedic doctor. As a society, we’re constantly straining our muscles, joints, ligaments, and tendons. 

In addition, nutrient deficiencies are incredibly common as more people resort to eating processed and fast food for their meals. With a lack of nutrition, our bones, joints, and muscles do not receive what they need to sustain themselves and remain healthy. 

Conditions such as Osteroporsosis—or bone loss—can create pain, inflammation, and bone breakage. Other nutrition deficiencies can cause low immunity, muscle weakness, and joint issues. 

Of course, nutritional deficiency isn’t the only reason someone can suffer from joint, muscle, tendon, or ligament issues. Aside from doing repetitive movements, athletes are more prone to muscle, tendon, ligament, and joint injuries. 

Whatever the cause may be, there’s one thing they all have in common: people with these types of injuries often need to be seen by an orthopedic surgeon. 

For some people, physical therapy can help; however, more people have to undergo orthopedic surgeries. Today, the most common orthopedic surgeries are ACL reconstruction, knee, hip, and shoulder replacements. If there’s one thing everyone who’s experienced orthopedic surgery can say, it’s that recovery can be extremely challenging and lengthy. 

Sadly, there’s not much one can do when recovering from orthopedic surgery. You simply have to wait until the operated area heals naturally. But, there is one specific treatment that aids the post-recovery period and prevents future joint issues. What is it? It’s red light therapy, of course! 

Red light therapy works by enhancing energy within your body’s cells, which works to repair any damaged cells in the body. By repairing damaged cells in the body, it reduces pain and inflammation, increasing the recovery period. 

Red light therapy has proven to achieve a few things:

  • It stimulates cells to remove toxins
  • Increases oxygen flow to the cells
  • Blocks pain signals in the brain and releases endorphins and enkephalin (a natural pain killer in the body)
  • Jumpstarts the body’s healing process by stimulating the mitochondria in the cells.

That said, red light therapy can be used to treat a wide range of joint, muscle, tendon, ligament, and bone injuries. The reason why it works on a wide scale of injuries is due to the fact it can treat various tissues within the body, reducing inflammation and pain. 

A review by Harvard Medical School and the University of Sydney found that laser therapy can be effective for treating:


  • Post-surgical pain
  • Tendonitis
  • Muscular back pain
  • Carpal tunnel syndrome
  • Cervical or lumbar radiculopathy
  • Epicondylitis
  • Osteoarthritis and rheumatoid arthritis
  • Whiplash injury
  • Frozen shoulder
  • Tendinopathy
  • Fibromyalgia
  • Sprains and strains

Red light therapy is also highly used within the athletic community to speed up the healing process, help players get back on the field, and prevent future injuries. 

Through red light therapy, it prevents muscle soreness, fatigue, and aids in recovery. By having the muscles recover quickly, red light therapy reduces inflammation, allowing the muscle to heal and avert future injuries.

From mild to severe joint, muscle, ligaments, bone, and tendon conditions, red light therapy improves recovery time and aids the healing process. The beauty is that this therapy is entirely possible to undergo from the comfort of your own home.
Lunas red light therapy devices provide high-quality at-home treatments to help you make the most out of your recovery. With red light therapy, not only will you recover from surgery, but you’ll feel even better than before.

Red and Blue LED Light on Milk Yield in Dairy Cows

Ruminant nutritionists formulate rations balanced according to the nutritional needs for the ruminant at a specific production level. The assumption being that the cows will eat everything they offered. However, cattle can select their feed, as they put together feed using their tongue and lips. Sorting has been studied most in cows al mixed ration (TMR) since it is often is oftenibitum, allowing cows to pick the feed particles they prefer and still reach the total dry matter (DM) they want. The TMR reports show that the most likely sorting is in favor of the short particles (mostly concentrate) and against the long particles (forages). Therefore, the feeding behavior of the cow modulates the amount of feed she eats, the nutrients she gets, rumen health, and ultimately her milk production.

Several methods have been used to try and reduce feed sorting in dairy cows. Recently, a long day photoperiod has been reported that could lower feed sorting against long particles. Today, Kaiyan provides advanced LED light equipment that is available for commercial use. The LED wavelength can be adjusted to the desired output.

Blue and red wavelength light has attracted interest in dairy barns. The cow eye is not sensitive to a red light, and therefore red light has been suggested as an option for illumination when people need to work with the animals during a time of the day when the cows have night. In humans, blue light is known to cause a carryover effect with increased activity after the light is turned off. If cows respond similarly to blue light, it may be interesting to include blue light in the dairy barns in the late afternoon or evening to stimulate activity during the night. This is of particular interest for automatic milking systems since they require cow activity around the clock. Solutions for dairy barns that include periods of the day with more red or blue LED light are already available on the market, as we now have fixtures of white LED light.

Eating Behavior of Dairy Cows

Encouraging DMI to promote milk production is one of the primary objectives for dairy farmers. The daily eating time, selection, number of meals per day, duration, and number of eating occasions per day are important aspects of feeding behavior.

Factors that Influence Eating Behavior

The environment, age of cattle, teeth condition, feed composition, and processing influence eating behavior. Just like grazing cattle, group-housed cows synchronize their behavior, including eating when kept indoors. The eating behavior of cows is controlled by social interactions, management practices, the environment, and health. Long ago, dairy cows were thought to be crepuscular eaters, motivated by sunrise and sunset timing to go for grazing. However, studies reported that fresh feed delivery timing had more influence on the feeding behavior of dairy cows kept indoors than the time of day. Also, studies found that daily eating time distribution changed following an increase in feed delivery frequency in group-housed dairy cows. The first hour and a half after fresh feed delivery is the period of peak eating activity. Little effect on cow behavior was observed when feed push-ups were done while still some feed in the trough. The feed trough design also affects feeding behavior as cows prefer eating from a feed trough that allows their head to be in a natural grazing position than having their head in an elevated position.

Types of Lights Used in Dairy and the Newly Available Light Sources

Common light sources used in dairy facilities are fluorescent and metal halide lights. During the last few years, LED lights have also become available for animal housing. This is not a new technology; LED light has been used in plant growth research since the mid-1980s but has been costly; hence limited to research only. However, 19 the Haitz’ Law as projected by Steigerwald et al., has come to action, that every decade their cost will decrease by 10 whereas their performance advances by a factor of 20. Now they have become affordable and advanced white LED lights thereby increasing their potential use in animal houses commercially

Advantages of LED Lights

It is possible to adjust the light intensity and spectral composition of LED lights mimicking that of natural day sunrise and sunset, making it possible to control color combinations, e.g., green, blue, and red. A LED light's lifespan is longer than that of fluorescent lights, around 100 000h compared to 8000 h. Furthermore, LEDs thermal output is low, saving energy, containing no mercury, efficient photoelectric conversion, and easy-to-contact to digital control systems making photoperiod management easy, for example, in dairy barns. Due to their long life span, they can decrease production costs as they do not need regular replacement and cuts off labor costs and the often-high risk work task of replacing lights since most barns have very high ceilings. The white LEDs produce light in the wavelength that cows can detect better, with peaks of emission around 460nm and 550.

In one study, ten multiparous pregnant Swedish Red cows in post-peak lactation were used. Cows were housed in a tie-stall barn. They were subjected to a 33-day red or blue LED light treatment during a long day photoperiod with 16 hours day and 8 hours night. Cows were fed silage and concentrate separately. Silage was fed three times a day, ensuring ad libitum intake with 5–10% orts. The concentrate was fed four times per day. Samples of silage were collected thrice a day, and individual orts were collected at the end of the day and the night. Data for eating behavior and milk yield were collected five days before and five days after the treatment period. Eating behavior was determined using the difference in the distribution of fractions of different straw lengths in the silage fed and orts during daytime and night time. A 2-screen Penn State Particle Separator (PSPS) (19mm and 8mm) with a solid bottom pan was used to determine the distribution of large, medium, and short silage fractions. Treatments did not affect total DMI. Overall, cows sorted for the large fractions against the medium and short fractions. During the LED period, there was a difference (P<0.001) in sorting between Red and Blue cows during the daytime. Cows on the Red LED light are sorted for the short fractions during the daytime. Blue cows showed different sorting (P<0.05) during day and night. Their sorting for the large fractions was more pronounced during daytime than night. Milk yield did not change during the trial and did not differ between the Red and Blue groups. In conclusion, sorting activity was greater during the daytime in the LED period, which could have been influenced by the LED light. Interestingly cows seem to have better vision in red than blue LED light. Furthermore, it also possible that the LED light maintains milk yield since no change was observed during the four-week trial in post-peak lactation.

PEMF Therapy in the Treatment of Osteoporosis and Similar Conditions

Osteoporosis is a systemic skeletal disease, characterized by the reduction of bone mass and the skeletal architecture's impairment as a whole. Theron is essentially disease's definitions on anatomopathological criteria, which attribute to the skeleton particular characteristics of fragility, such as making bone prone to fracture even after minor trauma.

Skeletal fragility can be diagnosed, thanks to current sensitometric methods, even in the absence of symptoms and fractures. Being a condition that heightens the risk of fracture, but that does not make itself necessary for the definition of the disease, osteoporosis can evolve in a completely asymptomatic way for a long time, in some cases even for a lifetime.

The US FDA has approved pulsed electromagnetic fields (PEMFs) as a safe and effective treatment for nonunion of bone. Despite its clinical use, the mechanisms of action of electromagnetic stimulation of the skeleton have been elusive. Recently, cell membrane receptors have been identified as the site of action of PEMF and provide a mechanistic rationale for clinical use. This review highlights key processes in cell responses to PEMF as follows: (1) signal transduction through A2A and A3 adenosine cell membrane receptors and (2) dose-response effects on the synthesis of structural and signaling extracellular matrix (ECM) components. Through these actions, PEMF can increase bone and cartilage's structural integrityECM's structural integrity, enhance enhance repair, and alter the homeostatic balance of signaling cytokines, producing anti-inflammatory effects. PEMFs exert a pro anabolic effect on the bone and cartilage matrix and a chondroprotective effect counteracting inflammation's catabolic effects in the joint environment. Understanding of PEMF membrane targets and the specific intracellular pathways involved, culminating in the synthesis of ECM proteins and reducing inflammatory cytokines, should enhance confidence in the clinical use of PEMF and identify clinical conditions likely to be affected by PEMF exposure.

The musculoskeletal system is highly responsive to its physicochemical environment. Bone and cartilage cells respond to changes in mechanical stress, fluid flow, pH, and pO2 by altering their phenotype and expressing a range of signaling and structural molecules that result, in particular, in an altered extracellular matrix (ECM) organization and associated biomechanical properties. Response to mechanical stress is perhaps the best recognized and intuitively obvious skeletal environmental condition, facilitating adaptation and modeling to changing biomechanical and environmental requirements, perhaps through intermediary strain-associated signaling events. In addition to mechanical stress, skeletal tissues, both bone, and cartilage, demonstrate an exquisite sensitivity to electrical and electromagnetic stimulation.

Responses of skeletal cells to pulsed electromagnetic fields (PEMF) have been exploited therapeutically with devices that expose tissues to appropriately configured fields to stimulate ECM synthesis for bone and cartilage repair. This review highlights key processes in cell responses to PEMF as follows: (1) signal transduction through cell membrane adenosine receptors (ARs), (2) the activation of osteoinductive pathways, and (3) the synthesis of skeletal ECM including structural and signaling molecules. These actions are reflected physiologically in the bone as the healing of fractures, osteotomies, nonunions, and joints, as the modulation of cartilage damage and reduction in catabolic and inflammatory cytokines in arthritis. Understanding the cellular responses to PEMF will inform clinical studies, may point to key issues that need further investigation, and will be relevant in promoting bone and cartilage repair, tissue engineering and regeneration in a repair mode, and damping inflammation in arthritis. Understanding the pathways of the activity of PEMFs provides a solid mechanistic basis for their clinical use.

There is strong evidence supporting a role for adenosine and its receptors in bone homeostasis and skeletal pathology, including osteoporosis and arthritis.4 Furthermore, adenosine, acting through the A2A receptor, inhibits osteoclast differentiation, and increases the rate of new bone formation in bone defects.5 A2A signaling also promotes the Wnt/β-catenin pathway regulating bone formation.6

Although the transmembrane signal recognition processes of PEMF are incompletely understood, the specific mechanism of interaction between PEMF and the cell membrane was reported by Varani et al.7 They identified for the first time that ARs were the main target of PEMF stimulation in inflammatory cells; ARs play a pivotal role in the regulation of inflammatory processes, with both pro-inflammatory and anti-inflammatory effects.8 It has been demonstrated that PEMF exposure induces a notable increase in A2A and A3 AR density on the cell membrane of chondrocytes, synoviocytes, and osteoblasts8 (Figure 1). Notably, A1 and A2B receptors were not influenced by the same exposure conditions. Moreover, in the presence of the specific A2A receptor agonist, PEMF exposure synergized with the agonist and induced a notable increase in intracellular cyclic adenosine monophosphate (cAMP) levels. On the contrary, the specific A2A receptor antagonist's presence blocked the effects of both the agonist and PEMF stimulation, suggesting that PEMFs specifically act through the activation of A2A ARs with a pharmacologic-like mechanism. The agonist activity of PEMF for the A2A and the A3 ARs is particularly relevant because it inhibits the NF-kB pathway, a key regulator of the expression of matrix metalloproteinases and several genes involved in responses to inflammation.9 Cohen et al. 10 showed in vivo that an experimental A2A agonist drug reduced cartilage damage in a rabbit model of septic arthritis of the knee. These observations formed the basis for the application of PEMF for chondroprotection of articular cartilage from the catabolic effects of joint inflammation, as discussed in more detail later.

Despite its clinical use, the mechanisms of action of electromagnetic stimulation of the skeleton have been elusive, and PEMF has been viewed as a “black box.” In the past 25 years, research has successfully identified cell membrane receptors and osteoinductive pathways as sites of action of PEMF and provides a mechanistic rationale for clinical use. Understanding of PEMF membrane targets and the specific intracellular and extracellular pathways involved, culminating in the synthesis of ECM proteins and reduction in inflammatory cytokines, should enhance confidence in the clinical use of PEMF and the identification of clinical conditions likely to be affected by PEMF exposure.

The biological effects of PEMF treatment and favorable effects on the skeletal system are the results of notable research efforts conducted internationally by the orthopedic community. They have attracted much interest from other medical specialties such as wound and tendon healing, rheumatology, and neurology that may be able to take advantage of the experiences developed with bone and cartilage treatments.

References

De Mattei M, Fini M, Setti S, et al.: Proteoglycan synthesis in bovine articular cartilage explants exposed to different low-frequency low-energy pulsed electromagnetic fields. Osteoarthritis Cartilage 2007;15:163–168.

Parent D, Franco-Obregon A, Frohlich J, et al.: Enhancement of mesenchymal stem cell chondrogenesis with short-term low intensity pulsed electromagnetic fields. Sci Rep 2017;7:9421.

Aaron RK, Ciombor DM, Keeping H, Wang S, Capuano A, Polk C: Power frequency fields promote cell differentiation coincident with an increase in transforming growth factor-beta(1) expression. Bioelectromagnetics 1999;20:453–458.

Ham J, Evans BA: An emerging role for adenosine and its receptors in bone homeostasis. Front Endocrinol (Lausanne) 2012;3:113.

Mediero A, Wilder T, Cronstein B: Adenosine receptors stimulate bone regeneration, in Biology and Pathology of Bone and Joint: Osteoclasts, Osteoblasts and Bone Remodeling. Boston, MA, ACR/ARP Annual Meeting, 2014, Abstract 19.

Borhani S, Corciulo C, Larranaga Vera A, Cronstein B: Signaling at adenosine A2A receptor (A2aR) in osteoblasts; crosstalk with Wnt/β-catenin signaling pathway, in Osteoarthritis and Joint Biology — Basic Science Poster I. Chicago, IL, ACR/ARP Annual Meeting, 2018, Abstract 1047.

Varani K, Gessi S, Merighi S, et al.: Effect of low-frequency electromagnetic fields on A2A adenosine receptors in human neutrophils. Br J Pharmacol 2002;136:57–66.

Varani K, Vincenzi F, Ravani A, et al.: Adenosine receptors as a biological pathway for the anti-inflammatory and beneficial effects of low-frequency low energy pulsed electromagnetic fields. Mediators Inflamm 2017;2017:2740963.

Massari L, Benazzo F, Falez F, et al.: Biophysical stimulation of bone and cartilage: State of the art and future perspectives. Int Orthop, 2019;43:539–551.

Cohen SB, Gill SS, Baer GS, Leo BM, Scheld WM, Diduch DR: Reducing joint destruction due to septic arthrosis using an adenosine2A receptor agonist. J Orthop Res 2004;22:427–435.

Aaron RK, Boyan B, Ciombor DM, Schwartz Z, Simon BJ: Stimulation of growth factor by electric and electromagnetic fields. Clin Orthop Rel Res 2004;419:30–37.

Aaron RK, Wang S, Ciombor DM: Upregulation of basal TGFß1 levels by EMF coincident with chondrogenesis — skeletal repair and tissue engineering implications. J Orthop Res 2002;20:233–240.

13. Zhou J, He H, Yang L, et al.: Effects of pulsed electromagnetic fields on bone mass and Wnt/beta-catenin signaling pathway in ovariectomized rats. Arch Med Res 2012;43:274–282.

Lin CC, Lin RW, Chang CW, Wang GJ, Lai KA: Single-pulsed electromagnetic field therapy increases osteogenic differentiation through Wnt signaling pathway and sclerostin downregulation. Bioelectromagnetics 2015;36:494–505.

Cai J, Shao X, Yang Q, et al.: Pulsed electromagnetic fields modify the adverse effects of glucocorticoids on bone architecture, bone strength, and porous implant osseointegration rescuing bone-anabolic actions. Bone 2020;133:115266.

Zhai M, Jing D, Tong S, et al.: Pulsed electromagnetic fields promote in vitro osteoblastogenesis through a Wnt/beta-catenin signaling-associated mechanism. Bioelectromagnetics 2016;37:152–162.

Jing D, Li F, Jiang M, et al.: Pulsed electromagnetic fields improve bone microstructure and strength in ovariectomized rats through a Wnt/Lrp5/beta-catenin signaling-associated mechanism. PLoS One 2013;8:e79377.

Wu S, Yu Q, Lai A, Tian J: Pulsed electromagnetic field induces Ca(2+)-dependent osteoblastogenesis in C3H10T1/2 mesenchymal cells through the Wnt-Ca(2+)/Wnt-beta-catenin signaling pathway. Biochem Biophys Res Commun 2018;503:715–721.

Pan Y, Dong Y, Hou W, et al.: Effects of PEMF on microcirculation and angiogenesis in a model of acute hindlimb ischemia in diabetic rats. Bioelectromagnetics 2013;34:180–188.

Tepper OM, Callaghan MJ, Chang EI, et al.: Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2. FASEB J 2004;18:1231–1233.

Hopper RA, VerHalen JP, Tepper O, et al.: Osteoblasts stimulated with pulsed electromagnetic fields increase HUVEC proliferation via a VEGF-A independent mechanism. Bioelectromagnetics 2009;30:189–197.

Goto T, Fujioka M, Ishida M, Kuribayashi M, Ueshima K, Kubo T: Noninvasive up-regulation of angiopoietin-2 fibroblast growth factor-2 in bone marrow by pulsed electromagnetic field therapy. J Orthop Sci 2010;15:661–665.

Petecchia L, Sbrana F, Utzeri R, et al.: Electro-magnetic field promotes osteogenic differentiation of BM-hMSCs through a selective action on Ca(2+)-related mechanisms. Sci Rep 2015;5:13856.

Pro Athletes Harnessing the Power of Red Light

Originally from https://www.lunaspanel.com/post/pro-athletes-harnessing-the-power-of-red-light


Being a professional athlete is no joke, and when your body is a central part of your job, it needs to be very well taken care of. And even when athletes are doing all the right things to take care of their body, injuries are still widespread in professional sports; but it used to be that their career was over if an athlete was injured. But now, athletes can undergo surgery and pop back up on the court or field months later. How is that possible?

As most athletes know, a large portion of time is dedicated to repairing muscles and alleviating inflammation for the next game. Regardless of the sport, teams spend millions of dollars on professional physical therapists to guarantee their athletes receive the highest physical treatment standard.

The recovery process for an athlete is essential and a determining factor of how well they’ll perform during their careers. You’ll often hear the words “optimizing performance” when discussing the recovery process for athletes. Today, the recovery process isn’t just to heal an athlete but to naturally enhance their performance.

So, how do professional therapists optimize professional athletes’ performance and recovery? Well, red light therapy is turning out to be one of the most effective treatments for these high-performing individuals.

Professional trainers are always looking for natural ways to enhance their player’s performance. With light has proven to be a lead modality, many trainers and athletes use light therapy to enhance the body’s natural healing process. But how does it work?

When used, natural red light penetrates the skin and cells. When the light reaches the mitochondria, it stimulates the production of adenosine triphosphate (ATP). ATP is a natural energy currency in the human body. With an enhanced ATP production, cells in the muscle are optimized and repaired faster.

Hundreds of peer-reviewed clinical trials have backed up the results athletes see on the courts and fields. In 2015, researchers conducted a meta-analysis of placebo-controlled trials, and the results were astounding. They found that most clinical trials showed “significant improvement for the main measures related to performance,” including endurance and speed. And through this meta-analysis, it was concluded that “phototherapy (with lasers and LEDs) improves muscular performance and accelerates recovery when applied before exercise.”

However, red light therapy does more than recover muscle tissue. It also increases muscle strength, ultimately improving physical performance.

A 2016 study researched red light therapy on elite athletes and trained and untrained athletes. What was found was that red light therapy after training could increase muscle mass. So, not only does red light therapy accelerate the recovery process, but it also improves muscle strength.

But what about endurance? Being strong is only one aspect of being an athlete. Endurance is crucial when competing against an opponent. A triple-blind, placebo-controlled trial published in 2018 studied the effects of red light therapy on men and women undergoing endurance training on treadmills. It was found that red light therapy pre-exercise can “increase the time-to-exhaustion and oxygen uptake and also decrease the body fat in healthy volunteers when compared to placebo.”

Another study from 2018 completed by Brazilian researchers found that after their randomized, triple-blind, placebo-controlled trial on pro soccer players, those who underwent red light therapy stayed longer on the playing field. It was concluded that light therapy “…had a significant improvement in all the biochemical markers evaluated…pre-exercise [light] therapy can enhance performance and accelerate recovery…”.

Peer-reviewed clinical trials worldwide have all concluded the same thing: red light therapy works for increasing athletic performance levels. Luna’s red light therapy device can help professional athletes and the rest of us exercise regularly, recover from injuries, and improve our physical and muscular health.

Light Therapy & Diabetes

DAccording to the Centers for Disease Control and Prevention (CDC), more than 100 million adults in the United States suffer from diabetes or pre-diabetes. A chronic disease characterized by elevated blood glucose levels (blood sugar), diabetes develops because the body doesn’t make enough insulin, a hormone produced by the pancreas. Low insulin levels cause glucose to build up in the blood, resulting in various health problems, some severe.

There are three types of diabetes: type 1, type 2, and gestational. Whichever type you may have, light therapy could be the treatment solution you’ve been looking for. This article will explore red light and near-infrared (NIR) light for diabetes: a novel solution that helps treat this disease's complications at the cellular level — healing from the inside out.

Red and Near-Infrared Light for Diabetes

While some people with type 2 diabetes (also called adult-onset diabetes) can achieve target blood sugar levels with lifestyle changes, diabetes medications, or insulin therapy may also be needed to control blood sugar. Many medications cause serious side effects. Diabetes has no cure, and symptom management is the only way to coax the disease into remission.

Red and NIR light has been used successfully to treat the complications associated with diabetes. Before we delve into that, let’s do a quick overview of what this treatment method actually is.

Red light therapy, also called low-level light therapy (LLLT) or photobiomodulation, is an umbrella term referring to the red light and NIR light. It uses powerful light-emitting diode (LED) bulbs to deliver intense beams of red and NIR wavelengths to bare skin.

Wavelengths of light are measured in nanometers (nm). Research has shown that red wavelengths from 630nm to 660nm, and NIR wavelengths from 810nm to 850nm, have the greatest scope of benefits — and come with no side effects.

Although studies often focus on either red or near-infrared wavelengths, experts say the best treatment approach is to use both. Doing so will provide skin-deep as well as deep-tissue benefits. For example, the 630nm to 660nm wavelengths address the skin's health, and the longer 810nm to 850nm NIR wavelengths penetrate deeper into the body. NIR wavelengths can even penetrate bone and hard connective tissue like cartilage.

Increase Capillary Formation for Improved Blood Flow

Thomas Burke, Ph.D., a retired physiologist with the University of Colorado Medical School, has studied blood flow — specifically changes in blood flow — for more than 30 years. Dr. Burke’s extensive research into the effects of red light therapy on circulation has led him to conclude that infrared light increases blood flow in any site in the body to which it is applied. This has profound implications for treating slow-healing wounds such as diabetic foot ulcers, which affect approximately 15 percent of patients with diabetes.

One effect of diabetes is meager amounts of nitric oxide produced by the body, which hinders normal blood flow. This is one reason people with diabetes often develop a circulatory condition called peripheral arterial disease, in which narrowed blood vessels reduce blood flow to the limbs. Many diabetes patients also develop diabetic neuropathy, a peripheral nervous system disorder that causes loss of feeling in the extremities, especially the feet.

The combination of poor blood flow and neuropathy can make people with diabetes more susceptible to ulcers or infections in the feet that, if allowed to spread, may require extreme measures such as amputation. LLLT can help circulation by stimulating the formation of tiny capillaries in areas treated by the light. This allows for better oxygen and nutrient delivery to the body’s peripheral regions, including the feet, which seem to bear the brunt of diabetic complications.

Increased Cellular Metabolism and Energy

The decreased blood flow that’s characteristic of diabetes interferes with the proper functioning of mitochondria, the “energy factories” inside most body cells. When mitochondria function normally, their primary job is to produce adenosine triphosphate (ATP), an energy-rich molecule that serves as fuel for cells. ATP is essential for normal cellular functioning, including repair and replication.

Poor cellular energy, officially known as mitochondrial dysfunction, is one of the main causes of diabetic neuropathy, so restoring normal mitochondrial function is essential. When there’s a chronic blood sugar imbalance, cells become stressed, unable to function properly, and unable to repair themselves.

Low-level light therapy addresses mitochondrial dysfunction by increasing ATP production. This, in turn, energizes cells and sparks a chain reaction of beneficial biological processes and improved health. When mitochondrial function is returned to normal, it supports skin ulcers and neuropathic pain and helps restore normal peripheral nervous system functioning.

Restored Normal Nerve Functioning

Until LLLT was developed, loss of sensation in the feet of diabetics was considered progressive and irreversible. Even today, the recommended treatment is often anti-inflammatory drugs that interrupt pain pathways. These drugs do not address the underlying problem: abnormal nerve signaling due to inflammation and mitochondrial dysfunction.

Today, diabetic neuropathy can be treated using near-infrared light. According to a 2015 study by medical researchers from Iran, NIR light therapy effectively reduces neuropathic pain and promotes damaged nerve cells' regeneration.

An earlier study by researchers from Japan also focused on LLLT’s effects on nerve regeneration. It is known that disrupted blood sugar levels can lead to oxidative stress, which can cause inflammation. The study revealed that NIR light acts as an antioxidant and reduces inflammation, conducive to nerve regeneration.

Increased Collagen Production

Diabetes can cause uncomfortable, often painful changes in the skin, including severe dryness, peeling, cracking, and abnormal callus growth. Red light therapy boosts the body’s natural collagen production so that as skin cells are renewed, the damaged skin can be gradually replaced by healthy skin. Improved blood flow and cellular functioning also support healthy skin growth.

Reduced Inflammation for Faster Wound Healing

Diabetic foot ulcers may form due to a combination of poor circulation, immune system deficiency that makes it hard for the body to fight off infection, diminished foot sensitivity (diabetic neuropathy), and ill-fitting shoes. Infected and dead tissue will need to be removed. The growth of healthy new tissue needs to be supported with blood sugar management and optimal mitochondrial functioning, and collagen production.

A Stronger Immune System

Improving health requires a robust immune system, and LLLT can help in several significant ways. For instance, it stimulates the production of stem cells, which are the body’s master cells with the potential to develop into many different types of cells. Stem cells remain in a dormant, non-specialized state until they are needed, when they are mobilized into action and carried to various parts of the body where they take on specialized roles.

Also essential for a healthy immune system is the thyroid, which LLLT helps to balance. People with diabetes have an increased risk of developing hypothyroidism, which is an underactive thyroid. Hypothyroidism results in mitochondrial dysfunction and poor cell functioning.

Also, research has shown that LLLT supports liver regeneration for more efficient waste disposal. This helps treat systemic inflammation and supports the workings of the immune system.

Consistency

LLLT is not an instant cure for any condition. You may experience relief after just one session, but the greatest results will come with time as the body’s cells regenerate and optimize their functioning. This can take a few weeks to a few months. Several sessions per week can help manage and minimize diabetic complications and keep the disease in remission on an ongoing basis.

Bear, Wolf, Lion or Dolphin: How Understanding your Sleep Type Will Change your Life

Sleep is big business these days — one in three people are believed to experience sleep deprivation — and everyone is keen to rely on the latest fashionable theory.

For years, sleep cycles were divided into two categories. People who enjoy mornings were known as “early birds.” And those of us who prefer staying up late were labeled “night owls.”

Well, step-aside birds. Mammals are the new name of the game. That’s right; scientists now believe there are four ways to classify sleep/wake cycles. In the science world, these classifications are known as chronotypes.

Chronotypes describe the periods when your body wants to sleep and when it wants to be awake. And to make it easier, the chronotype categories are named after animals. Our natural sleep tendencies are now categorized as bear, wolf, lion, and dolphin.

It is crucial to understand your animal chronotype. Once you do, you can start to schedule your life around your body’s natural cycles. Kaiyan Medical suggests that this may help you sleep better and feel more productive at work.

Two Animals are not Enough

People have different circadian rhythms. That’s just a fact of life.

Science shows that:

“The human circadian system actively synchronizes to the 24-h day via environmental signals of light and darkness.”

Circadian? A 24-hour cycle. It’s your body clock. Sleep psychologists reckon they can determine our natural sleeping patterns. By understanding our own, we can have a happier, more productive life.

Now, Chronotype is a term that describes a person’s natural rhythm. And it doesn’t only relate to sleep. Chronotypes influence all primal instincts.

Author Michael Breus, Ph.D., recently suggested that there are 4 natural chronotypes. And he named these after 4 animals that follow similar sleep/wake patterns. So, say goodbye to night owls and early birds. Wolves, lions, bears, and dolphins are the new circadian rhythm mascots.


The Chronotypes

Check out the chronotypes below and let us know in the comment section which one sounds like you!

Wolves

Alright, night owls, this is your group. Just like these nocturnal creatures, you are most alert at night. Wolves tend to stay up later and struggle with waking up early.

Only about 15% of the population falls into this group. Wolves are more productive in the later afternoon and evening.

Sleep experts recommend that wolves set their alarm for 7 a.m. (snooze for 30 minutes) and go to sleep by midnight.

Lions

Lions are the new early birds. Like these wild cats, you are most alert in the morning. You have no trouble waking up and getting to work. But, lions tend to feel the afternoon slump. And by the evening, they feel drained.

About 15% of the population identifies as a lion. Sleep experts recommend that lions wake up around 5:30 a.m. and go to sleep by 10:30 p.m.

Bears

No, you don’t need to hibernate. But, like these diurnal (awake during the day, asleep at night) creatures, you follow the solar cycle. Bears generally feel awake during the day and need 8-hours of solid sleep at night.

About 50% of the population falls into this category. This group is productive in the morning and struggles with the mid-afternoon slump. Sleep experts recommend that bears wake up around 7 a.m. and go to sleep by 11 p.m.

Dolphins

Dolphins “only sleep with half of their brain at a time?” Sound familiar? Well, this is the insomniac (often self-diagnosed) group. You might be anxious and have trouble turning your brain off at night. Dolphins usually don’t get a complete night’s sleep.

About 10% of the population falls in this category. And even though they wake-up tired, dolphins are most productive by mid-morning.

Sleep experts recommend that dolphins get up around 6 a.m. and try to sleep around midnight.

Sleep Like an Animal

Who doesn’t want a better night’s sleep and a more productive day? Start scheduling your days based on your chronotypes! Once you know more about your chronotype, you can form sleep patterns that work with (not against!) your body’s natural rhythms.

So what are you waiting for? Here in Kaiyan, we are embracing our inner animals and start following our optimal sleep schedule.



Sources:

Fischer, Dorothee et al. "Chronotypes in the US – Influence of age and sex." PubMed, 21 Jun. 2017, www.ncbi.nlm.nih.gov/pmc/articles/PMC5479630/

Bellis, Rich. "How To Design Your Ideal Workday Based On Your Sleep Habits." Fast Company, 26 Nov. 2017, www.fastcompany.com/40491564/how-to-design-your-ideal-workday-based-on-your-sleep-habits

Levi, Anthea. "This Is the Best Time of Day to Do Everything, According to Your Chronotype." Health.com, 31 Oct. 2016, www.health.com/mind-body/how-to-get-more-energy-chronotype

Light Therapy - Stimulating Healing and Improving Bone Health

The body is naturally designed and made to be able to build newer bones when the need arises. Studies on animals and humans have shown that red and infrared light therapy greatly aids in healing breaks, fractures, and bone defects. In 2013, researchers in Sao Paulo, Brazil, studied the effects of red and near-infrared light on rat bones' bones' healing process. Upon a piece of bone being sliced from the upper leg in an “osteotomy” of 45 rats, the rats were split into three groups — Group 1 Received no light, the second group were administered red light (about 660–690 nm), and the third group was placed on exposure to near-infrared light (about 790- 830nm)

The study found “a significant increase in the degree of gray level (mineralization) in groups treated with the laser after 7 days” and “after 14 days, only the group treated with the laser therapy (red light and near-infrared light) in the infrared spectrum showed higher bone density.

Red light and near-infrared light have been shown to stimulate energy production in the bone cells, improve blood vessel formation, circulation, and blood flow to the affected area, regulate and decrease inflammation, increase bone growth factors, enhance the production of collagen and procollagen, which stimulates the growth of bone cells.

Because ATP production is interrupted in broken bones, and cells begin to die due to a lack of energy, the right kind of red light and near-infrared light therapy has shown increased bone formation and collagen deposition. It’s no wonder red light, and NIR is gaining so much momentum in sports teams among athletes. Many pro teams now use light therapy to speed recovery and get their players back in action after an injury, more every year. Red and near-infrared light wavelengths can penetrate deep into tissue and bone for all kinds of healing effects. Concentrated natural light stimulates the mitochondria in the cells, reducing oxidative stress and helping the body to produce more usable energy to power itself, regenerate, and heal.

Bone Density Benefits
  • Increases bone mineral density and bone structure: Preliminary research shows benefits for improving osteoporosis, including a boost in osteogenesis, increased stress load, and preserved vertebrae strength
  • Strengthens bones: Increases osteoblast proliferation, collagen deposition, and 3 bone neoformation when compared to bones not treated with red light, and increases maximum bone tolerance
  • Improves bone healing: Accelerates bone healing in extraction sites, bone fracture defects and distraction osteogenesis 5
  • Reduces swelling from bone injuries: A proven anti-inflammatory treatment indicated by the FDA that has been shown to curb swelling in facial bone fractures
  • Enhances overall bone health: Increases natural collagen production, which is essential to healthy bones and skin7
References
  1. Lasers Surg Med. 2010 Aug;42(6):519-26 - PubMed
  2. J Biol Chem. 2002 Apr 19;277(16):14221-6 - PubMed
  3. Lasers Surg Med. 2006 Jan;38(1):74-83 - PubMed
  4. Bone. 1988;9(2):73-9 - PubMed
  5. Nature. 2003 May 15;423(6937):337-42 - PubMed

Could Red Light Therapy be the Cure for Low Libido?

We’re animals of habit. When it comes to intimacy, it’s a night-time activity. Published findings on The Daily Mail discovered that most people have sex between 9:30 p.m. to 10:30 p.m. But what most people don’t realize is that for improved sex, you need the light.

Low libido (sex drive) has been a physical issue for both men and women. In the United States, sexual dysfunction affects 43% of women and 31% of men alone. However, further studies have shown this is a global issue. A study with 5,255 male participants from Croatia, Norway, and Portugal found that 14.4% reported a lack of sexual desire lasting two months or longer.

It’s clear low libido isn’t an issue within one gender; it’s a health concern that both men and women grapple with. For women, one survey at Hackensack University Medical Center, New Jersey, found that 36% of women between 18-to-3-years-old and 65% of women between 46-to-54-years-old reported low sexual desire.

But why are we losing our libido?

A loss of libido is a common issue linked to both the physical and the psychological self. Physical issues linked to low libido include low testosterone, alcohol and drug use, medication, and too little or too much exercise. At the same time, psychological issues can include stress, mental health, depression, and relationship issues.

Where do many of these problems stem from? Well, it certainly doesn’t help that we’re living our lives in overdrive: we’re working more; we’re chronically stressed, and generally living in ways that aren’t natural to our species.

However, where we live also plays a crucial role. Andrea Fagiolini, M.D., said, “In the Northern hemisphere, the body’s testosterone production naturally declines from November through April, and then rises steadily through the spring and summer with a peak in October. You see the effect of this in reproductive rates, with June showing the highest rate of conception.”

Since our body’s testosterone production naturally declines during winter and spring, many people are looking for treatment. As a result, many opt for hormone replacement therapy. It’s a controversial treatment that comes with a heavy dose of side effects, including prostate or breast cancer, sleep apnea, liver toxicity, and cardiovascular events.

Are people supposed to adjust to living with a low libido if they don’t want to undergo a dangerous treatment? Of course not. Luckily, red light therapy has been proven through various clinical studies to improve low libido levels.

At the University of Siena, Italy, scientists tested sexual and psychological responses to bright light. They discovered that regular, early-morning use of light therapy increases testosterone levels and sexual satisfaction.

So how does red light therapy increase testosterone in the body, exactly?

When your body is exposed to bright light, it produces a chemical called luteinizing hormone (LH). The more LH produced in the body leads to a higher testosterone increase, said the lead researcher Andrea Fagionlini, M.D.

Other studies in animals suggested that red light therapy influences Leydig cells — the body’s sperm producers located in the testicles.

“We found fairly significant differences between those who received the active light treatment and the controls,” Fagiolini stated. Dr. Brad Anawalt, an endocrinologist and professor of medicine at the University of Washington in Seattle provides two possible explanations for red light therapy’s effect on testosterone.

Since testosterone levels are the highest in the morning, a lack of daylight can reduce morning levels. Dr. Anawalt said, “[So] exposure to bright light might raise testosterone concentrations, leading to improved libido.” He added that “many men, and women, with low libido, suffer from depression. The bright light that mimics sunshine may help alleviate depression. Improved mood results in improved sex drive.”

Red light therapy can increase testosterone levels and reduce some of the causes of low libidos, such as depression, anxiety, and overall fatigue.

Lunas red light therapy panels have many benefits — even on our sex and love lives — which is an integral component to our well-being.

Stretch Marks & Light Therapy

Why Do We Get Stretch Marks?

A stretch mark is a type of scar called striae, meaning “thin, narrow scar”. In people who develop stretch marks, the skin has stretched faster than it can grow, such as during pregnancy, growth spurts, or rapid fat or muscle gain. The abrupt stretching causes the collagen and elastin proteins responsible for the skin’s structure and elasticity to rupture. This, in turn, causes the dermis to tear.

As the dermis tears, the body’s healing mechanisms spring into action to close the wound as quickly as possible to prevent infection and further damage.

Normally, as the skin regenerates and grows, it’s an elegantly organized latticework of collagen and elastin proteins. But when the skin tears, the body doesn’t have time to build an elegant structure to fill in the gap. Time is of the essence in any wound repair, including torn skin.

The collagen clumps together hurriedly, aiming for efficient closure of the wound before infection can set in. “Scarring is the result of a system that has learned to respond extremely quickly to a wound,” says Dr. John Newman, a cosmetic surgeon and researcher at the Laser Center of Virginia in Virginia Beach.

This haphazard process results in tough and functional but unattractive tissue — what we know as a scar. “It is kind of like nailing down a crisscross of two-by-fours over a hole in a deck,” says Newman. “It seals the hole, but it doesn’t look very nice.”

Newly formed stretch marks are darker than the surrounding skin and can be slightly raised, itchy, or painful. If they’re left untreated, they become permanent scars. Their color will lighten, and their appearance will fade below the top layer of the surrounding skin.

The bigger mystery is why stretch marks don’t disappear over time as the skin regenerates. The key lies in the information that emerging cells receive from adult cells in the area. Skin cells, whether they’re normal cells or scar cells, regenerate about once every 30 days. Growth of new skin cells begins at the bottom-most layer of the scar, and older (dying) cells are pushed to the surface where they naturally slough off.

However, Neuman explains that that that that emerging cells “learn” from their immediate neighbors and predecessors and develop the same characteristics as ir replacement their replacement cells. As a result, any emerging cell in contact with scar cells will become new scar tissue rather than normal skin tissue.

Red Light Therapy For Stretch Marks

If you have tried to get rid of stretch marks, perhaps you’ve used specialized creams that contain retinoids. These work to some extent, but only if you catch your stretch marks early and treat them while they’re still forming. Retinoids work by stimulating collagen production. However, they can irritate sensitive individuals, and doctors often recommend that pregnant women avoid anything containing retinoids.

Another common treatment, known as microdermabrasion, essentially involves “sandblasting” the skin with tiny crystals. This sloughs off dead skin

cells and stimulates the production of collagen. Microdermabrasion is a fairly harsh treatment that can lead to irritation and damage, especially to sensitive skin.

The most extreme treatment for stretch marks is plastic surgery, such as a mini tummy tuck. This may be effective, but there are risks associated with any invasive procedure and the high cost.

Is there a better option for restoring the appearance of the skin? The answer is yes, absolutely. Also known as photobiomodulation and low-level light therapy (LLLT), red light therapy improves skin appearance, reduces signs of aging, treats chronic skin conditions, reduces scarring, and promotes skin wound healing.

When red light therapy is used, visible red light and invisible near-infrared (NIR) light are applied to the skin with LED bulbs' devices. Wavelengths of light are measured in nanometers (nm), with red light ranging from 630nm to 660nm and NIR light ranging from 810nm to 850nm. Human cells respond favorably to these wavelengths, similar to how natural sunlight affects plant cells by stimulating more energy and optimization of cell function.

When the red light is shone on bare skin, it soaks into the mitochondria, colloquially referred to as the powerhouses of cells' energy factories. The mitochondria are, in turn, stimulated to produce more adenosine triphosphate (ATP), which is the primary cellular fuel. This energizes cells to perform their normal functions, from fighting off pathogens to performing repair and regeneration.

Improved Blood Flow

Proper healing relies on good circulation to the skin. Red light promotes the proliferation of endothelial cells, which make up the inner layer of capillaries (the tiny blood vessels that deliver oxygen and nutrients throughout the body). This was the focus of a 2017 study by a team of researchers from Austria, who found that red light consistently increased migration and proliferation of endothelial cells.

Without proper blood circulation, there would be no healing since endothelial cells also deliver white blood cells to the sites they need. In skin wound healing, white blood cells are necessary to protect the vulnerable area from infection while the wound closes up.

Reduced Inflammation

Acute inflammation results in the redness that’s noticeable in fresh stretch marks. This is a normal and necessary part of the tissue regeneration scar's process. Acute inflammation, which is a function of the immune system, actually sets the stage for normal tissue repair and regeneration. Inflammation is quickly followed by the production of new skin structures — which, as previously described, are hastily assembled to ensure that the torn skin doesn’t become infected.

But sometimes, the inflammatory process continues after the wound has healed, leading to chronic inflammation. It can lead to a variety of widespread problems throughout the body, including disease. “Some inflammation is good,” says Dr. Robert H. Shmerling, an associate professor of medicine at Harvard Medical School. “Too much is often bad. The goal is to recognize when inflammation is simply doing its job, and when it can potentially cause problems.”

Hundreds of studies have shown how red light therapy can significantly reduce inflammation. Many of these were conducted by Dr. Michael A. Hamblin, an associate professor of dermatology at Harvard Medical School and a noted expert on red light therapy. In the final report of a 2017 study, Hamblin refers to red light therapy’s “pronounced anti-inflammatory effects.”

Mobilize Stem Cells

During the skin-rebuilding phase, stem cells, which are unspecialized “master” cells, mobilize to the site and develop into most any type of specialized cells that are needed by the body. Ideally, they develop into normal skin cells, rather than scar tissue, to replenish damaged or destroyed cells due to skin tearing.

Red light has been shown to activate stem cells. As Barbara Gefvert, editor-in-chief of BioOptics World, explains: “Recent research shows … that noninvasive application of light can boost the natural growth of an individual’s own stem cells to enable exciting new treatments.” Stem cells can assist with the tissue regeneration process and stimulate normal and healthy behavior in existing cells. This can prevent the formation of new stretch marks and gradually reduce the appearance of existing stretch marks.



How Light Ignites an Internal Fire - Lack of Exposure to Light may Increase Metabolic Syndrome Risk

Yes, fat cells deep under your skin can sense light. And when bodies do not get enough exposure to the right kinds of light, fat cells behave differently.

This discovery, published Jan. 21, 2020, in the journal Cell Reports, was uncovered by scientists at Cincinnati Children’s who were studying how mice control their body temperature. What they found has implications far beyond describing how mice stay warm.

The study shows that light exposure regulates how two kinds of fat cells work together to produce the raw materials that all other cells use for energy. The study authors say that disruptions to this fundamental metabolic process appear to reflect an unhealthy aspect of modern life — spending too much time indoors.

Our bodies evolved over the years under the sun’s light, including developing light-sensing genes called opsins. But now we live so much of our days under artificial light, which does not provide the full spectrum of light we all get from the sun.”

Richard Lang, PhD, developmental biologist and senior author of the study.

Lang directs the Visual Systems Group at Cincinnati Children’s and has authored or co-authored more than 120 research papers, including many related to eye development and how light interacts with cells beyond the eye.

“This paper represents a significant change in the way we view the effects of light on our bodies,” Lang says.

Shining New Light on the Role of Light

Many people understand that certain wavelengths of light can be harmful, such as gamma radiation from a nuclear bomb or too much ultraviolet light from the sun burning our skin. This study from Lang and colleagues describes a different, healthy role for light exposure.

Despite the fur of a mouse or a person's clothing, light does get inside our bodies. Photons — the fundamental particles of light — may slow down and scatter around once they pass the outer layers of skin, Lang says. But they really do get in, and when they do, they affect how cells behave.

In this direction, Lang’s work dates back to 2013 when he led a study published in Nature, which demonstrated how light exposure affected fetal mice's eye development. More recently, in 2019, Lang and colleagues published two more papers, one in April in Nature Cell Biology that reported possible benefits of light therapy for eye development in preterm infants, and another study in October in Current Biology that details how light receptors in the skin help mice regulate their internal clocks.

The new study in Cell Reports includes important contributions from Russell Van Gelder, MD, Ph.D., and Ethan Buhr, Ph.D., from the University of Washington, Randy Seeley, Ph.D., University of Michigan.

“This idea of light penetration into deep tissue is very new, even to many of my scientific colleagues,” Lang says. “But we and others have been finding opsins located in a variety of tissue types. This is still just the beginning of this work.”
How Light Ignites an Internal Fire

In the latest findings, the research team studied how mice respond when exposed to chilly temperatures — about 40° F. They already knew that mice, much like humans, use both a shivering response and an internal fat-burning response to heat themselves.

Deeper analysis revealed that the internal heating process is compromised in the absence of the gene OPN3 and exposure, specifically to a 480-nanometer wavelength of blue light. This wavelength is a natural part of sunlight but occurs only at low levels in most artificial light.

When light exposure occurs, OPN3 prompts white fat cells to release fatty acids into the bloodstream. Various types of cells can use these fatty acids as energy to fuel their activities. But brown fat literally burns the fatty acids (in a process called oxidation) to generate heat that warms up the chilly mice.

When mice were bred to lack the OPN3 gene, they failed to warm up other mice when placed in chilly conditions. But surprisingly, even mice with the correct gene failed to warm up when exposed to light that lacked the blue wavelength.

This data prompted the team to conclude that sunlight is required for normal energy metabolism. At least in mice. While the scientists strongly suspect that a similar light-dependent metabolic pathway exists in humans, they need to complete another series of experiments to prove it.

“If the light-OPN3 adipocyte pathway exists in humans, there are potentially broad implications for human health,” the study states. “Our modern lifestyle subjects us to unnatural lighting spectra, exposure to light at night, shift work, and jet lag, all of which result in metabolic disruption. Based on the current findings, insufficient stimulation of the light-OPN3 adipocyte pathway may be part of an explanation for the prevalence of metabolic deregulation in industrialized nations where unnatural lighting has become the norm.”

What’s Next?

It likely will require several years of study to flesh out this discovery. Someday, in theory, “light therapy” could become a method for preventing metabolic syndrome from developing into diabetes. Replacing indoor lights with better, full-spectrum lighting systems also could improve public health, Lang says.

However, more study is needed to pin down the potential therapeutic value of light therapy. Questions to answer include determining how much sunlight is needed to support a healthy metabolism and whether people battling obesity might lack a functional OPN3 gene in their fat cells. Also unknown: when would light therapy matter most: for pregnant mothers? For infants and children? Or for fully developed adults?

Source:

Cincinnati Children’s Hospital Medical Center

Journal reference:

Opsin 3-Dependent Adipocyte Light Sensing enhances Nayak, G., et al. (2020) Adaptive Thermogenesis in Mice. Cell Reports. doi.org/10.1016/j.celrep.2019.12.043.

Keep Your Skin Healthy with Red Light Therapy

Skincare doesn’t just affect the way you look. It also plays a huge role in your overall health — from body temperature to hormone regulation to your immune system. If you’re into skincare as much as we are, one of the many ways that can help you keep your skin healthy is red light therapy. In this article, we’ll take a deep dive into why you should take care of your skin, and we’ll also discuss how red light therapy devices can help you achieve your skin goals.

Are you ready? Let’s go straight into it.

Why Do You Need to Take Care of Your Skin?

As the largest organ in our body, your skin is your body’s first defense line to bacteria, germs, viruses, etc. It’s a vital part of the immune system and some processes in your body, such as temperature control, blood circulation, and hormone production.

Main Functions of the Skin

Let’s take a look at the skin's main functions to help you understand how essential it is for you to take care of this vital organ.

1. Defense and Immunity

The skin is an active immune organ, and it serves as our physical barrier from the dangers of the environment. It helps protect our bodies from diseases, germs, viruses, dirt, UV radiation, and potential thermal and physical injuries. It also helps detect and fight off infection, toxins, allergens, hazardous substances, and carcinogens.

2. Temperature Regulation

Aside from protecting us from extreme cold or heat, the skin also helps prevent moisture loss, keeping us from being dehydrated.

3. Sense of touch

The skin has a somatosensory system that is composed of touch receptors and nerve endings. This system is responsible for the sensations we feel, including pain, pressure, vibrations, smoothness, roughness, heat, cold, tickle, itch, and more.

4. Storage and Production of Vitamin D

Your body also uses your skin's deeper layers to store metabolic products, fat, and water. The skin is also responsible for producing vitamin D, supplied in the body when the skin gets enough sunlight exposure.

5. Beauty

Need we say more? Your skin plays a huge part in your appearance. Of course, when your skin is healthy, you also look glowing, radiant, and definitely more attractive.

Red Light Therapy and Keeping Your Skin Healthy

Before we proceed with the “how,” let’s first define what red light therapy is. Red light therapy is a non-invasive treatment option for different kinds of medical conditions. It is also used for health improvement and various aesthetic procedures.

Decades ago, red light therapy machines were only available in clinics, high-end salons, and spas. Nowadays, red light therapy devices can be bought and used by anyone. In fact, you can do red light therapy at the comfort of your home and incorporate it into your skincare routine.

How Does Red Light Therapy Work?

Red light therapy works by delivering wavelengths of red and near-infrared (NIR) light to our cells and skin. Besides helping enhance cellular function, red light therapy also helps stimulate the mitochondria and produce ATP (adenosine triphosphate) energy. This treatment option usually takes only about 10 minutes per session.

How Does Red Light Therapy Help Keep Your Skin Healthy?

Our skin relies on millions of cells to be able to perform its functions. When our cells experience homeostasis or a state of balance, our skin and body perform (and look) better. And as mentioned above, red and NIR light enhances cellular function while also preventing inflammation and oxidative stress. Red light therapy helps make your skin look and feel softer, smoother, and healthier.

Besides, red light therapy also helps damaged tissues heal and regenerate faster. It also has anti-inflammatory benefits, potentially increasing blood flow to damaged and inflamed tissues and reducing oxidative stress.

Final Thoughts

Skincare is self-care, as keeping your skin healthy also produces multiple benefits to your health. Thankfully, aside from proper hygiene, regular exercise, a balanced diet, and an established skincare routine, red light therapy can also improve your overall skin health.

For more information about red light therapy or to view our catalog of red therapy devices, click here.

Sources:

https://www.hse.gov.uk/skin/professional/causes/structure.htm

The Light for your Wounds

I remember how I used to come home with a bruise or cut every day after playing basketball in my childhood. Cuts and bruises were a part of the game, but my mother never took them lightly.

They may not seem like a tiny problem, but sometimes even a small wound can affect critical ways. It can lead to an infection as the cut exposes your body to external bacteria. This is why it important not to neglect the wounds.

What Happens When we Get a Cut?

Do you know what exactly happens when we get a cut?

In a small cut, the skin gets punctured, and the regular blood vessels get damaged. The effect is on the dermis layer. Whereas in the case of a deep cut, the impact is majorly on the tissues and the blood vessels break down completely results bleeding.

How our Body Reacts to Wounds?

When you get a cut, the body gets help from cells like neutrophils and immune cells. The section starts clotting the blood and reduces the blood flow. Antibodies, proteins clean up the site and eat the dead skin cells and other wastes.

Once the cut is free from germs, the skin growth gets started, and your body starts to rebuild the lost tissues and fix the broken blood vessels with the new ones. This repair work is done by cells called fibroblasts. In the last stage of wound healing, a lot of remodeling done to make the vessels and tissue functional again.

(Image source: https://askabiologist.asu.edu/)

The Light on the Wounds

No wonder science and technology have covered a long way to make human life easier. Now wounds can be treated with light therapy.

Yes, light therapy!!

That sounds out of the ordinary. But light therapy can heal your wounds by 200%!!

Wounds that Can be Treated by Light Therapy

Since wounds are of different types, wounds can be open or closed wounds. According to reports, LED light therapy can treat non-healing wounds, i.e., that doesn’t heal after 4 weeks. People with the following types of wounds can be healed from LED light therapy:

• Diabetic ulcers

• Venous ulcers

• Pressure ulcers

• Non-healing surgical wounds

• Serious burns

• Oral sores from chemotherapy/radiation

• Metabolic-disease-related wounds

• Wounds that repeatedly break down

How Red and Near-Infrared light Works for Wound

Light therapy a broad range of light having different wavelengths. Red light (620 nm — 680 nm) is visible red light, whereas Near-Infrared light (700nm — 1100nm) is invisible. Many studies reported that biologists have found that treating the cells with near-infrared light can grow 150% to 200% faster than cells not stimulated by light.

Biologically the Near-Infrared light boosts microcirculation and formation of new capillaries at the wound section.

Infrared light rays increase cellular energy that speeds up any healing process and penetrates deeper into the skin. As a result, the wound section receives more oxygen and nutrients to naturally help with the wound's healing process.

The light nurtures the lymph system activity. This assists with the detoxification process of the wound without overtaxing the lymph system and prevents lymphedema. The near-infrared rays also clean up the dead or damaged cells, making a clear blood circulation path.

Another benefit of Infrared therapy is that it helps release ATP (raw cellular energy), which gives energy to the damaged cells in the wound to heal better and faster (study).

Not only this, the studies have shown that the wound size also decreased by up to 36%.

Source: www.slideshare.net/amintalebi1/light-and-wound-healing

So, next time you encounter a wound, put a light on it!!

Let your cut heal through LIGHT THERAPY!

References:

http://www.jofamericanscience.org/journals/am-sci/am0706/36_5769am0706_203_208.pdf

https://www.infrared-light-therapy.com/red-light-therapy-wound-healing/

https://pubmed.ncbi.nlm.nih.gov/25363448/

https://pubmed.ncbi.nlm.nih.gov/25654197/

https://iopscience.iop.org/article/10.1088/1054-660X/24/8/083001

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126803/

https://pubmed.ncbi.nlm.nih.gov/24155549/

Speeding up Recovery for Athletes: Red Light Therapy Treatment

Athletes take exercise and training very seriously to maximize and improve performance. Whether you’re a competitive elite athlete or someone who’s just born to win every day, recovery can be one of the most neglected aspects of our daily lives.

Recovery: We hear it all the time from coaches and instructors, but it’s also one of the hardest things to do. The saying “Push yourself to your limits” happens also to have its own limits. Neglecting your training recovery aspect for optimal performance can take a toll on our body in the long run.

In this article, we show the importance of rest and recovery and some of the ways to speed up our body’s healing process, such as integrating red light therapy treatment.

What is Recovery?

After training or a strenuous workout, our body responds to strain, injury, or stress as a defense mechanism in inflammation. While it may sound damaging, inflammation is a natural response when our muscle tissue regenerates and grows from microtears. Going through the process is important to allow muscle growth and performance improvement. However, the inflammation needs recovery for your muscles to heal from too much strain or injury for it to maximize its healing effects.

Recovery is the process that your body undergoes to recuperate between training sessions or from the time of danger to its healing progression. Recovery works by giving your body time to regenerate muscle tissues.

Whether it’s a strain, acute soreness, or severe damage, your body needs time to heal. The time needed for the recovery process is also dependent on the severity of the damage/strain/injury. This means that the greater the stressor's intensity to your body, the longer the time you need to spend to allow your body to recover.

What are the Examples of Recovery?
  • Getting enough sleep
  • Resting
  • Cooling down
Why is Recovery Time Important?

Many athletes have made recovery time a priority as it assists in the healing process of muscles post-inflammation. Giving your body time to recover can result in an improved performance.

During the recovery time, the muscle repairs regenerate and strengthens to tolerate a higher level of strain the next time. In other words, taking time to heal makes you stronger and less susceptible to future injuries. Having enough recovery time helps in optimal performance and longevity by helping the athletes convalesce both psychologically and physically to train and perform better.

By doing this, you can prevent future chronic problems, decreased sports performance, increased risk of injuries, or fatigue caused by inadequate healing.

What are the Ways to Speed Recovery?

1. Plan Your Rest Time

Planning your rest schedule and duration involves many factors such as the intensity of your activity, your age, and your skill level in sports/pieces of training. You may need less time to recover or more, depending on your personal needs. As a general rule, for medium to intense workouts/training, it is prescribed to maintain a healthy duration of 45 hours in between training.

Pro tip: Engage in Active Recovery

If you’re not suffering from an injury or severe damage, it’s important to incorporate active recovery periods during your recovery time so your body can maintain its active state.

Proper blood circulation is important in the recovery process. When the body gets injured, the body responds by dilating blood cells to speed up blood flow. Active recovery helps maintain good blood circulation and removes lactic acid out of inflamed muscles. Active recovery activities involve light physical movements such as stretching or yoga to allow proper blood flow and help your muscles recover and adapt better.

2. Get Enough Sleep

The Human Growth Hormone (HGH) is at its peak at night as we sleep. This hormone is responsible for tissue repair and recovery. This is why the key to a speedy recovery is to make you get a good REM sleep at the right time during your recovery period. Make sure to get a minimum of 7 hours of sleep at night to ensure that your body gets enough rest that it needs and to avoid any future complications. Lack of sleep can deter the process of muscle recovery.

Pro tip: Don’t be scared of having a few extra hours

Especially when you are suffering from intense strain/injury, it’s important to sneak in a few extra hours of sleep within your recovery period. In fact, a 2018 study suggests that sleep extension, a form of sleep intervention, can significantly contribute to the success of an athlete’s recovery. One way to ensure you get a significant amount of rest is to make sure your body has a healthy circadian rhythm. If you’re worried that you’re having trouble sleeping at night, there are many ways to improve your circadian clock- including red light therapy.

3. Refuel your Body

A healthy diet is also one of the great pillars of health. The nutrients you take in play a great role in your body’s function to cooperate with the recovery process. Minimize processed foods that may contain too much salt, sweets, and alcohol. These types of food may promote inflammation and dehydration, which can hinder the recovery process. Make sure to eat a balance recommended diet of whole foods.

Have an evaluation with a licensed dietitian or nutritionist to assess your nutritional needs. Assessment may vary depending on different factors such as weight, BMI, and activity level.

Pro tip: Focus on your Protein Intake

Protein is the key macronutrient that is responsible for muscle building and repair. It has amino acids that are metabolized by your body to ease muscle inflammation and build stronger muscles. Skip gulping on those protein supplements and focus instead on taking protein from whole foods such as lean meat, eggs, and cheese.

4. Listen to your Body

There can be all kinds of rules in recovery to maximize healing, but you can’t go wrong with paying attention to your body’s signals. Often, your body’s responses can be neglected. However, overlooking these signals can result in overtraining, which puts your body at risk of having more problems in the long run.

Despite your recovery time or period, if your body signals indicate pain and soreness, it’s important to give it time to recover better to address the issue. Aside from obvious physiological signs, pay attention to your heart rate variability, indicating your body’s adaptability to stress and your overall cardiovascular fitness.

5. Incorporate Red Light Therapy

Thanks to innovative medical devices, athletes and trainers have utilized more advanced healing modalities like red light therapy. Red Light Therapy is a popular, non-invasive, and effective light therapy treatment that can improve blood circulation essential for tissue and muscle recovery. It works by using LED to deliver wavelengths that deeply penetrates the skin and cells.

Integrating red light therapy in your recovery process can speed up muscle repair and minimize pain and swelling. The therapy accelerates the healing process by enhancing macrophage activity responsible for the white blood cell’s healing and anti-inflammatory response.

Pro tip: Try using Light Therapy Body Pad

Kaiyan Medical’s Light Therapy Body pad utilizes a high-end, medical-grade dual optical energy pad that uses 30 pieces of red light and 30 pieces of infrared light. The therapy's duality promotes deep treatment by treating injured skin surface while repairing deeper muscle, bones, tissue, and joint damage. The therapy pad is specially made with a broader light spectrum to increase absorption and penetration so you can maximize the treatment’s benefits. It’s a safe, non-invasive treatment that you can add to your recovery process so you can get back in the game stronger than ever.

Recovery and Rest are just as important as optimizing and improving performance. Allowing your body to maximize its natural healing processes can improve performance and overall better physical and mental health.

More References

Ratamess NA, Alvar BA, Kibler WB, Kraemer WJ, Triplett NT. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 2009.

Garber CE, Blissmer B, Deschenes MR et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 2011.

Michael Kellmann, Maurizio Bertollo, et al. Recovery and Performance in Sport: Consensus Statement. Int J Sports Physiol Perform. 2018 Feb 1.

So-Ichiro Fukada, Takayuki Akimoto, Athanasia Sotiropoulos. Role of damage and management in muscle hypertrophy: Different muscle stem cells' behaviors in regeneration and hypertrophy. Biochim Biophys Acta Mol Cell Res. 2020 Sep.

Daniel J Plews, Paul B Laursen, et al. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med. 2013 Sep.

Michael R. Irwin, Richard Olmstead, Judith E. Carroll. Sleep Disturbance, Sleep Duration, and Inflammation: A Systematic Review and Meta-Analysis of Cohort Studies and Experimental Sleep Deprivation. Biol Psychiatry. 2016 Jul 1; 80(1): 40–52.

https://www.medicalnewstoday.com/articles/247927

https://www.health.harvard.edu/blog/heart-rate-variability-new-way-track-well-2017112212789

https://www.webmd.com/men/features/benefits-protein#1

How to Prevent Jet Lag with Light Therapy

How to Prevent Jetlag with Light Therapy Treatment

Globetrotters know flying across time zones can be all fun and games until headaches start to kick in, sleep cycles get disturbed, and frequent moments of inappetence prevents them from enjoying even the most sumptuous local cuisine. If you’ve had any of these unfortunate events disturb your travel plans and work productivity, you’ve most likely experienced a jet lag.

What is Jet Lag?

Jet lag, also known as jet lag disorder is our body’s reaction to abrupt changes in new environments that are two or more time zones ahead/delayed. This can affect even the most seasoned flyers like pilots and business travelers.

What causes Jet lag disorder?

Your body has a clock system called circadian rhythm that schedules your body for its sleep and wake up time. Your circadian clock is synced depending on your original time zone.

Jet lag is caused by a temporary discoordination with your circadian clock and your new time zone or sleep-wake schedule. This is why when you expose your body to abrupt schedule changes, its normal functions related to sleep, coordination, and gastrointestinal processes are disrupted. While your mind may be ready to fly west, your body may still be stuck home and is still hours ahead.

Treating Jet Lag with Light Therapy

Jet lag can take days, weeks, or longer to improve, which may affect daily activities. In addition, although jet lag may be a temporary disorder, frequent exposure also poses significant long-term risks such as disturbances in menstrual cycle, cognitive defects, and temporal lobe atrophy.

One popular and effective treatment for jet lag disorder is Light therapy. Light therapy has been considered as a popular and effective treatment for jet lag disorder and has been backed by research since 1980.

Your body clock is largely influenced, among other factors by light, which is indicative of the rising and setting of the sun. This means that adjusting to a new time zone also means adjusting to a new daylight-night time and awake-sleep schedule.

Essentially, light therapy assists your brain and body in adjusting to a new time zone by conditioning yourself to light at an appropriate time. This allows your normal body functions to be in sync with your new schedule. By regulating light exposure, you can adjust faster with new conditions.

Studies show that exposure to light therapy helps people adjust their circadian clocks to new time zones more efficiently and effectively. Treatment of jet lag by Light therapy involves an exposure to natural or artificial light such as red light therapy.


How does Red light therapy work?

Red light therapy is a non-invasive, quick and easy treatment for jet lag that brings concentrated natural light to your body cells in order to condition it for a new day-light schedule. Red light therapy emits natural light that can boost cell energy without the putting your body at risk of the damaging UV rays from the sun.

If you travel westwards, you can use Red Light in the evening to help you adjust to a later time. On the other hand, if you travel eastwards, you can expose yourself to red light in the morning in order to acclimate your body to an earlier time zone.

Kaiyan produces high-quality Red light therapy home devices that utilize medical-grade LED (Light-emitting Diode) in order to produce a natural red light that is ideal for adjusting to new time schedules.

The great thing about this device is that, if you often work away from sunlight, this indoor light therapy device can be a convenient way to adopt your circadian clock to a new time zone. Check out our top picks for the best FDA-cleared light therapy masks.

Experiencing jet lag may be the ultimate bummer for travelling, but sufficient knowledge and proper treatment can keep you away from ruining your travel plans and goals.

References:

https://www.scientificamerican.com/article/how-to-prevent-jet-lag/
https://www.mayoclinic.org/diseases-conditions/jet-lag/diagnosis-treatment/drc-20374031
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829880/


Healing Muscular Pain with Light Therapy

Light Therapy Healing Muscular Pain

When it comes to pain, we could hardly avert it! Especially the muscle pain. Given that the human body has over 600 muscles, it is tough to avoid muscle pain. Evidently, one out of three Americans is affected by muscle pain annually.

Not only this, Musculoskeletal pain affects around 116 million Americans, which results in poor productivity, missed work or school, fatigue, and lost interest in work.

But doesn’t we treatments for this chronic pain? Of course, we do have several options. Currently, therapies available consist of non-steroidal anti-inflammatory drugs, steroid injections, pain medications, and surgery. Each of these has its own specific risk profiles.

What we need now is an effective solution that is less time-consuming, low risk, safe and non-invasive, and yet cost-effective. All these features are available in treatment; we call Low Laser Light Therapy (LLLT). Light therapy has been in the medical field over the past forty years. Light therapy has been demonstrated to lessen inflammation and edema, promote healing in a range of musculoskeletal pathologies. LLLT is being accepted around the globe. This is an advanced, cost-effective, non-invasive therapy for pain that could elevate the quality of life while reducing your financial strains. The causes of muscular pain are numerous. Hence, LLLT helps people from all fields like sports, fitness, medical, and even old age.


Mechanism of LLLT

In this process, light with a wavelength in the red to the near-infrared region of the spectrum (660nm–905nm) is employed on the skin surface. The reason for using these wavelengths is that they have the ability to penetrate the skin and soft/hard tissues. From various conducted clinical trials, this treatment is proven to have a good effect on pain, inflammation, and repairing of the tissues. The therapy goes from 30 to 120 seconds or more a week, depending upon the pain's severity.

Based on the tissue condition, the therapy can go on for weeks or months. LLLT has resulted in relief and reduction of inflammation, pain relief, and accelerated tissue regeneration.

But how does the light actually work?

LLLT in the Treatment of Pain

Do you know that many acute orthopedic conditions such as strains, sprains, muscular back pain, frozen shoulder, neck and back pain, etc., are amenable to Low Laser Light Therapy (LLLT)?

The Infra-Red light relieves pain in a different section of the body and increases relaxation sensation while also comforting the muscles. LLLT has been shown to enhance the multiplication of cells like fibroblasts, keratinocytes, endothelial cells, and lymphocytes. Fibroblasts and keratinocytes are two major cell types that respond to the inflammatory phase in the repair/regeneration process.

LLLT can enhance neovascularization, promote angiogenesis, and increase collagen synthesis to succor in the healing of acute and chronic wounds. The LED light sessions have shown the ability to heal skin, nerves, tendons, cartilage, and bones. Low-intensity LLLT stimulates mitochondria and also enhances the mitochondrial membrane potential.

The peripheral nerve endings of nociceptors (also known as the pain receptors), consisting of the thinly myelinated and unmyelinated, slow-conducting C fibers, lie within the epidermis. This complex network converts harmful stimuli into action potentials. Moreover, these nerve endings lie on the surface or superficial in nature, making the LLLT wavelength penetration work easy.


Hence, with the rise of chronic pain in different countries, it is imperative to validate cost-effective and safe techniques for managing painful conditions, allowing people to live active and productive lives. Light therapy is constantly evolving in relieving muscular pain. It improves the muscle's endurance, reduces muscle soreness, joint pain, and inflammation.

It’s time to let go of the pain!!

Experience the difference with light therapy from Kaiyan Medical.

More References:

https://pubmed.ncbi.nlm.nih.gov/12605431/

https://pubmed.ncbi.nlm.nih.gov/27472858/

https://arthritis-research.biomedcentral.com/track/pdf/10.1186/s13075-015-0882-0

https://www.sciencedirect.com/science/article/pii/S0004951414601276?via%3Dihub

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743666/