Dreaming of Light Therapy

Light therapy is beneficial for more than just one problem. Rather, it’s an all-in-one health and wellness treatment. It helps with skincare issues ranging from acne to wrinkles to eczema by supporting the mitochondria, which in return provokes better cell production within the body and targeted areas. 

But another thing light therapy is proving to be powerful with is sleep. Sleeping disorders are more frequent than ever, with many people experiencing sleep disorders and, if not full disorder, struggle with achieving restful sleep. 

Stress and anxiety build up through the day, and our addiction to our devices greatly disturbs our sleeping habits. However, a good night’s sleep is actually one of the most important things to maintain if you want optimal health.

While there are many types of sleep disorders—insomnia, sleep apnea, restless legs syndrome (RLS), and narcolepsy—bright light therapy has proven to help reduce many of these conditions. In addition, its effects are also being studied on how they can help with Parkinson’s disease. 

Sleep onset insomnia is one of the things light therapy can effectively treat. Insomnia is the inability to fall asleep at a normal time. Though there are various reasons for insomnia, one problem stems from the advanced or delayed circadian rhythms.

There’s also advanced sleep phase disorder when you tend to feel sleepy in the late afternoon or early evening. Bedtime typically happens between 6 p.m. and 9 p.m. Early bedtime means you often wake up between 2 a.m. and 5 a.m. Light therapy here can help reset your internal clock in the early evening hours.

With delayed sleep phase disorder, you tend to stay up all night or at least a few hours, often past midnight. As a result, you also tend to wake up later in the morning, having lost a good chunk of your day. In this instance, light therapy in the morning, right after you’ve woken up, helps to advance your internal clock and makes you feel sleepy earlier in the evening, helping to adjust to a normal sleeping pattern.

And yet, light therapy treatment is proving to be the perfect solution.

In 2012, Light therapy was studied and found to be an effective nonpharmacological and non-invasive way of treating sleep disorders and improving sleep quality among elite female basketball players. Each participant within the research received14-30 minute light therapy sessions once every night for 14 nights in a row.

Research also showed improved melatonin levels among basketball players, and melatonin is a hormone that promotes sleep. Players in return experienced improved endurance performance. 

In later studies as well, light therapy has proved itself to be very effective. In 2013, a Taiwanese study looked at participants and their electroencephalography (EEG), which means they examined their electrical brain activity. They checked before, during, and after the light therapy simulation. The research suggested that light therapy is beneficial in helping people with sleep disorders. But these are the only studies that show the effectiveness of light therapy.

A study on the cognitive function of people with traumatic brain injury discovered that light therapy helped those people with their cognitive function. Light therapy helped decrease episodes of post-traumatic stress disorder (PTSD). Participants also reported better sleep during the study. 

New research from the University of Arizona Health Sciences discovered that with light therapy, people with migraines have a better chance of improving their sleep, plus act as a preventative measure for future migraines. Patients who were submitted to the research experienced better sleep and fewer headaches with light therapy.

Our minds have been occupied with a lot, with the pandemic, with people experiencing more hardships than before. Even if they’ve gotten used to it, the way of living has drastically changed. It’s no surprise that our sleep has also been affected by this. It’s reported that having bad dreams due to the ongoing pandemic isn’t anything too surprising nor impossible. 

Growing evidence suggests that light therapy can help us improve the ability to fall asleep, remain asleep and get a good night’s all in one. In times when our dreams and sleep are invaded by negative feelings related to any upsetting and unsettling occurrence in our life, light therapy can help us ease our daily stressors and might help us avoid sleep-disturbing dreams.

That said, you want the right light therapy device to help you improve your sleep. Kayian medical produces MDA-certified and FDA-approved light therapy devices to ensure you get the most out of light therapy. 

Find it interesting? Share it!

Light Therapy & Sleep Quality: The Secret of the Chinese Female Basketball Players

Good sleep is a prerequisite for optimal performance. Given that people spend about one-third of their lives asleep, sleep has substantial development, daily functioning, and health. Perhaps no daytime behavior has been associated more closely with improved sleep than exercise. Researchers have shown that exercise serves as a positive function for sleep. Regular exercise consistently has been associated with better sleep. Moreover, the American Academy of Sleep Medicine considers physical exercise a modality of nonpharmacologic treatment for sleep disorders. When studying the influence of exercise on sleep, most investigators have compared acute and sedentary control treatments. In the study of regular moderate-intensity endurance exercise, researchers also provided compelling evidence that exercise promotes sleep.

However, exercise can negatively affect sleep quality. Exercising immediately before going to sleep is detrimental to sleep quality. Athletes train very hard to improve their on-field performances, but excessive training may decrease performance, known as overtraining syndrome. Researchers have shown that symptoms of overtraining indicate poor-quality sleep. Good sleep is an important recovery method for the prevention and treatment of overtraining in sports practice.

In a recent study in which red-light therapy (wavelength = 670 nm, light dose = 4 J/cm2) was used, researchers indicated that red light could restore glutathione redox balance upon toxicologic insult enhance both cytochrome c oxidase and energy production, all of which may be affected by melatonin. Melatonin is a neurohormone that is produced by the pineal gland and regulates sleep and circadian functions. No one knows whether sleep is regulated by melatonin after red-light irradiation in athletes. Researchers have demonstrated that phototherapy improves muscle regeneration after exercise. A red light could protect human erythrocytes in preserved diluted whole blood from the damage caused by experimental artificial heart-lung machines.

Participants

Twenty female athletes of the Chinese People’s Liberation Army team (age = 18.60 ± 3.60 years) participated in the study. All participants were healthy and were not using medications regularly or temporarily during the measurements. Athletes were excluded if they had participated in less than 80% of the scheduled team physical training and basketball sessions for the last 3 months or used any nutritional supplements or pharmacologic agents. All participants provided written informed consent, and the Ethical Committee approved the China Institute of Sport Science study.

Design

Participants were assigned randomly to either a red-light therapy intervention group (n = 10) or non–red-light therapy intervention group (placebo group, n = 10). Measurements were collected at preintervention (baseline) and postintervention (14 days). The exercise training schedule of the 2 groups was unchanged during the 14 days; the red-light treatment group used a red-light therapy instrument every night for total body irradiation for 30 minutes. The training routine of the athletes during the 14 intervention days included 12 exercise sessions with the following specifications: 2 hours of morning training, 2 hours of afternoon training, and no training on Sunday.

The red-light treatment participants lay in the supine position. Continuous illumination was performed using noncoherent red light from a whole-body red-light treatment machine-like Kaiyan’s red light therapy bed, with an average wavelength of 658 nm and a light dose of 30 J/cm2. The whole body received the phototherapy treatment. The placebo participants also lay in the supine position under the red-light device but did not receive any light illumination. All participants wore swimsuits to enhance irradiation from the device and were blind to the treatment.


Measurement

Sleep Quality

The Chinese version of the PSQI measured sleep quality. The 19-item measure assesses sleep quality and disturbances over a half-month time interval. The total PSQI score ranges from 0 to 21, and higher scores reflect poorer-quality sleep. The 7 items of this instrument measure several aspects of insomnia: difficulties with onset and maintenance of sleep, satisfaction with the current sleep pattern, interference with daily functioning, noticeable impairment attributed to sleep problems, degree of distress, and concern caused by any sleeping problems.

Cooper 12-Minute Run

Participants were instructed to complete as many laps as possible on a 400-m outdoor track during the 12-minute test period. Emphasis was placed on pacing oneself throughout the test. The test administrators counted the laps completed during the 12-minute test period while calling out the time elapsed at 3, 6, and 9 minutes and orally encouraging the participants. At the end of the 12-minute period, the test administrator instructed the participants to stop and used a measuring wheel to determine the fraction of the last lap completed by each participant. This distance was added to the distance determined by the number of laps completed to give the total distance covered during the test.

Serum Melatonin

In humans, the serum level of melatonin, derived mainly from the pineal gland, demonstrates a clear increase at night and a decrease during the day. Given that the masking effects of activities (e.g., exercise, sleep, and food intake) have little effect on the circulating melatonin level's daily pattern, melatonin secretion appears to directly reflect the function of the biological clock as a specific marker of the circadian rhythm.

Conclusions

The study has demonstrated that red-light illumination positively affected sleep quality and endurance performance variables in Chinese female basketball players. Based on previous studies, we can infer that red-light treatment contributes to increased melatonin secretion in the pineal gland and muscle regeneration. Although more studies involving phototherapy, sleep, and exercise performance need to be performed, red-light treatment is a possible nonpharmacologic and noninvasive therapy to prevent sleep disorders after training.

Acknowledgments

This research project was supported by the National Key Technologies R&D Program Fund of China (2006BAK37B06).

Originally from:


Red Light and the Sleep Quality and Endurance Performance of Chinese Female Basketball Players

Jiexiu Zhao, Ye Tian, Jinlei Nie, Jincheng Xu, Dongsen Liu

J Athl Train. 2012 Nov-Dec; 47(6): 673–678. doi: 10.4085/1062-6050-47.6.08

PMCID: PMC3499892

References

Skein M, Duffield R, Edge J, Short MJ, Mundel T. Intermittent-sprint performance and muscle glycogen after 30 h of sleep deprivation. Med Sci Sports Exerc. 2011;43(7):1301–1311. [PubMed] [Google Scholar]

Gerber M, Brand S, Holsboer-Trachsler E, Puhse U. Fitness and exercise as correlates of sleep complaints: is it all in our minds? Med Sci Sports Exerc. 2010;42(5):893–901. [PubMed] [Google Scholar]

Youngstedt SD. Effects of exercise on sleep. Clin Sports Med. 2005;24(2):355–365. xi. [PubMed] [Google Scholar]

Myllymaki T, Kyrolainen H, Savolainen K et al. Effects of vigorous late-night exercise on sleep quality and cardiac autonomic activity. J Sleep Res. 2011;20(1 pt 2):146–153. [PubMed] [Google Scholar]

Youngstedt SD, Kripke DF, Elliott JA. Is sleep disturbed by vigorous late-night exercise? Med Sci Sports Exerc. 1999;31(6):864–869. [PubMed] [Google Scholar]

Driver HS, Taylor SR. Exercise and sleep. Sleep Med Rev. 2000;4(4):387–402. [PubMed] [Google Scholar]

van Straten A, Cuijpers P. Self-help therapy for insomnia: a meta-analysis. Sleep Med Rev. 2009;13(1):61–71. [PubMed] [Google Scholar]

Tanskanen M, Atalay M, Uusitalo A. Altered oxidative stress in overtrained athletes. J Sports Sci. 2010;28(3):309–317. [PubMed] [Google Scholar]

Roose J, de Vries WR, Schmikli SL, Backx FJ, van Doornen LJ. Evaluation and opportunities in overtraining approaches. Res Q Exerc Sport. 2009;80(4):756–764. [PubMed] [Google Scholar]

Campbell SS, Dawson D, Anderson MW. Alleviation of sleep maintenance insomnia with timed exposure to bright light. J Am Geriatr Soc. 1993;41(8):829–836. [PubMed] [Google Scholar]

Guilleminault C, Clerk A, Black J, Labanowski M, Pelayo R, Claman D. Nondrug treatment trials in psychophysiologic insomnia. Arch Intern Med. 1995;155(8):838–844. [PubMed] [Google Scholar]

Yeager RL, Oleske DA, Sanders RA, Watkins JB, III, Eells JT, Henshel DS. Melatonin as a principal component of red light therapy. Med Hypotheses. 2007;69(2):372–376. [PubMed] [Google Scholar]

Radogna F, Diederich M, Ghibelli L. Melatonin: a pleiotropic molecule regulating inflammation. Biochem Pharmacol. 2010;80(12):1844–1852. [PubMed] [Google Scholar]

Leal Junior EC, Lopes-Martins RA, Rossi RP et al. Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med. 2009;41(8):572–577. [PubMed] [Google Scholar]

Leal Junior EC, Lopes-Martins RA, Baroni BM et al. Comparison between single-diode low-level laser therapy (LLLT) and LED multi-diode (cluster) therapy (LEDT) applications before high-intensity exercise. Photomed Laser Surg. 2009;27(4):617–623. [PubMed] [Google Scholar]

Itoh T, Murakami H, Orihashi K et al. Low power laser protects human erythrocytes in an in vitro model of artificial heart-lung machines. Artif Organs. 2000;24(11):870–873. [PubMed] [Google Scholar]

Buysse DJ, Reynolds CF, III, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213. [PubMed] [Google Scholar]

Buysse DJ, Ancoli-Israel S, Edinger JD, Lichstein KL, Morin CM. Recommendations for a standard research assessment of insomnia. Sleep. 2006;29(9):1155–1173. [PubMed] [Google Scholar]

Barclay NL, Eley TC, Buysse DJ, Rijsdijk FV, Gregory AM. Genetic and environmental influences on different components of the Pittsburgh Sleep Quality Index and their overlap. Sleep. 2010;33(5):659–668. [PMC free article] [PubMed] [Google Scholar]

Desmet KD, Paz DA, Corry JJ et al. Clinical and experimental applications of NIR-LED photobiomodulation. Photomed Laser Surg. 2006;24(2):121–128. [PubMed] [Google Scholar]

Whelan HT, Connelly JF, Hodgson BD et al. NASA light-emitting diodes to prevent oral mucositis in pediatric bone marrow transplant patients. J Clin Laser Med Surg. 2002;20(6):319–324. [PubMed] [Google Scholar]

Figueiro MG, Rea MS. The effects of red and blue lights on circadian variations in cortisol, alpha amylase, and melatonin. Int J Endocrinol. 2010;2010:829351. [PMC free article] [PubMed] [Google Scholar]

Lynch HJ, Wurtman RJ, Moskowitz MA, Archer MC, Ho MH. Daily rhythm in human urinary melatonin. Science. 1975;187(4172):169–171. [PubMed] [Google Scholar]

Miles A, Philbrick DR. Melatonin and psychiatry. Biol Psychiatry. 1988;23(4):405–425. [PubMed] [Google Scholar]

Lynch HJ, Jimerson DC, Ozaki Y, Post RM, Bunney WE, Jr, Wurtman RJ. Entrainment of rhythmic melatonin secretion in man to a 12-hour phase shift in the light/dark cycle. Life Sci. 1978;23(15):1557–1563. [PubMed] [Google Scholar]

Vaughan GM, Allen JP, Tullis W, Siler-Khodr TM, de la Pena A, Sackman JW. Overnight plasma profiles of melatonin and certain adenohypophyseal hormones in men. J Clin Endocrinol Metab. 1978;47(3):566–571. [PubMed] [Google Scholar]

Gastel JA, Roseboom PH, Rinaldi PA, Weller JL, Klein DC. Melatonin production: proteasomal proteolysis in serotonin N-acetyltransferase regulation. Science. 1998;279(5355):1358–1360. [PubMed] [Google Scholar]

Sack RL, Hughes RJ, Edgar DM, Lewy AJ. Sleep-promoting effects of melatonin: at what dose, in whom, under what conditions, and by what mechanisms? Sleep. 1997;20(10):908–915. [PubMed] [Google Scholar]

Wright HR, Lack LC. Effect of light wavelength on suppression and phase delay of the melatonin rhythm. Chronobiol Int. 2001;18(5):801–808. [PubMed] [Google Scholar]

Lack L, Wright H, Kemp K, Gibbon S. The treatment of early-morning awakening insomnia with 2 evenings of bright light. Sleep. 2005;28(5):616–623. [PubMed] [Google Scholar]

Baroni BM, Leal Junior EC, Geremia JM, Diefenthaeler F, Vaz MA. Effect of light-emitting diodes therapy (LEDT) on knee extensor muscle fatigue. Photomed Laser Surg. 2010;28(5):653–658. [PubMed] [Google Scholar]

Ihsan FR. Low-level laser therapy accelerates collateral circulation and enhances microcirculation. Photomed Laser Surg. 2005;23(3):289–294. [PubMed] [Google Scholar]

Baroni BM, Leal Junior EC, De Marchi T, Lopes AL, Salvador M, Vaz MA. Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur J Appl Physiol. 2010;110(4):789–796. [PubMed] [Google Scholar]

Hynynen E, Uusitalo A, Konttinen N, Rusko H. Heart rate variability during night sleep and after awakening in overtrained athletes. Med Sci Sports Exerc. 2006;38(2):313–317. [PubMed] [Google Scholar]

Neonatal Care Taps into Light Therapy

When a baby is born, all parents hope for a healthy child—all ten fingers and toes, a strong heart, and an able body. However, between 10 and 15 percent of babies born within the U.S. require special care within the NICU (Neonatal Intensive Care Unit), which is where preterm or diseased babies are cared for. 

This time is crucial for babies; it's the stage in which we, as humans, are most sensitive. After the first hour of life, newborns should receive eye care, vitamin K, and recommended immunizations (birth dose of OPV and Hepatitis B vaccine). They should be assessed for birth weight, fetal age, congenital disabilities, and newborn illness signs. Special care is provided for sick newborns, preterm and/or low birth weight, and babies exposed or infected by HIV or have congenital syphilis.

One of the more common diseases for premature babies is jaundice, which refers to the yellowish discoloration of the skin, sclerae, and mucous membranes caused by an increase in bilirubin in the blood. This substance derives from the metabolism of hemoglobin contained in red blood cells. For the newborn, it is (in most cases) destined to disappear within a few days.

Jaundice becomes evident when the amount of bilirubin exceeds 3 mg per deciliter. The yellowish color occurs first in the face and sclerae (the white part of the eye) and then extends to the trunk and upper and lower limbs. Jaundice can be physiological or indicate a pathology.

However, jaundice can become severe. This happens when it goes untreated for too long, it can cause a condition called kernicterus. Kernicterus is a type of brain damage resulting from high levels of bilirubin in a baby's blood. It can cause cerebral palsy and hearing loss.

Babies are naturally sensitive, and premature newborns are even more at risk. Their immune systems are still developing due to being born prematurely, which increases their risk of getting sick. Skin conditions of many kinds are common; in addition to jaundice, many experience feeding issues, and fever (always the first sign of an infection). 

Due to the nature of premature babies, it's essential to consider a non-invasive, non-medical treatment. They're still growing, just fully coming into their own and catching up on time missed developing in mom’s belly. 

Light therapy is an incredible tool for these little humans, working inward and targeting the cellular level. It helps with both external and internal problems, which means that at the cellular level, light therapy alters and enhances the cell constitution. This, as a result, leads to faster and better reproduction, creating a healthier and stronger organism and body to function with. 

Light therapy is a non-invasive, non-pharmaceutical form of therapy. The way it can help with neonatal care is unique. During treatments, the babies are completely safe and protected, with their eyes covered. The skin gets exposed to the light therapy lamp to absorb its benefits. The lamp is positioned specifically for the baby, no closer than 30.5cm. 

Light therapy has successfully treated newborn jaundice by lowering the bilirubin levels in the baby's blood through a process called photo-oxidation. Photo-oxidation adds oxygen to the bilirubin, making it dissolve in water easily. 

Since light therapy also helps to regulate circadian rhythm and melatonin, the treatments can also help babies sleep, which is essential in their healing and development. 


You can customize and completely control light therapy consumption for babies, thanks to Kaiyan Medical’s state-of-the-art light therapy device manufacturing services. We have been working for 15 years to produce the best light therapy products on the market which are MDA-certified and FDA-approved light therapy devices, many of which are cleared for at-home treatments. Of course, before using a light therapy device, always consult your doctor.

Beard Growth & Light Therapy

Beard Growth & Light Therapy

“The benefit of having a beard is protection, as well as aesthetics,” says Dave Harvey, M.D. “It's good protection against wind, chafing, and traumatic injury. It’s also a trend, so we see a lot of men with some form of facial hair.”

The Health Benefits of Beards

Beards can:

  • Protect skin from sun damage. Beards can help protect the skin from harmful UV rays, though the degree of protection may depend on hair density and thickness. “You’re going to have some protection because hair is a reflective medium,” says Dr. Harvey. “Even though some UV rays get through, there is some scattering of the light, and that’s how it helps protect against sun damage.”
  • Keep you warm. Beards can add a layer of protection to your chin and neck, thus keeping you warm in colder weather. The longer and fuller the beard, the better it will insulate your face.
  • Make you feel more attractive. A study conducted by the Official Journal of the Human Behavior and Evolution Society found that men with a moderately full beard are most attractive. Men with full beards may be perceived as better fathers who could protect and invest in their children. “Men with beards have a powerful look,” says Dr. Harvey. “And that’s an attractive thing.”

Common Problems for Beard Growers

Growing a beard is not always easy. And if your beard is not properly cared for, it can become a harbinger for bacteria.

“If you don’t clean your beard well, and you let it just do its own thing, sometimes you can accumulate yeast and get dandruff within the beard,” says Dr. Harvey. “With that, you’ll get a reactive scaling on the face and flaking like you would with dandruff. So those patients need to be put on antifungal shampoo.”

Beard growers also face the challenge of ingrown follicles that result in bumps known as acne keloidalis.

“Some men will get a raised scarring type of bump called an acne keloidalis of the neck,” he says. “So we offer them topical antibiotics or Retin A for those particular reasons.”

Low-Level Laser Therapy for Beards

Low-level laser therapy (LLLT) is an FDA-approved treatment using laser light energy to circulate blood flow to hair follicles. Laser therapy for hair growth can be used to stop hair loss in men and women. The non-invasive lasers stimulate hair follicles to induce regrowth, resulting in a thicker beard in several weeks of treatments.

Laser hair therapy is also called red light therapy. The process irradiates photons in skin tissue, resulting in photons being absorbed into weaker hair follicles and promoting hair growth.

How Successful Is Laser Hair Restoration?

Laser treatment for hair loss works because photons amp up circulation and stimulation, which brings back hair follicles that may have died off.

Clinical Study

Laser hair restoration therapy is continuing to develop. Still, the National Institutes of Health has conducted multiple studies on laser hair growth therapy to see if it works for those with alopecia and male pattern baldness.

The NIH study used a controlled clinical trial that found laser hair therapy works for men and women, and it’s safe.

Another study from 2013 included male participants aged 18 to 48. The result of laser hair therapy treatment included a 39 percent increase in hair growth for participants over four months.

However, laser therapy is just one piece of the puzzle. Many factors contribute to repeated hair loss, including:

  • Age.
  • Genetics.
  • Medical conditions like diabetes and lupus.
  • Hormones.
  • Poor diet.
  • Side effects of medications, such as chemotherapy.
  • Stress.

How Long Does Laser Hair Therapy Take To Work?

From your first treatment, it can take several weeks to see a noticeable difference. This is because red light therapy for hair loss must be administered multiple times over 4 to 6 weeks to begin working.

If you don’t see any growth after 90 days, it’s probably unlikely you’ll regrow hair with this method. You should consult your doctor about the growth cycle and see how long it will take.

Wellness Gurus: Who's Turning to Light Therapy for Full-Body Treatment

Light therapy has many benefits, working from the inside, out. It not only helps with our appearance but also internal wellness — because who said beauty's just skin deep? 

Many people find themselves turning to this new form of treatment since it's non-invasive and comes with long-term positive effects — something most people aren't used to hearing. 

While outwardly, the skin smooths out, pores are reduced, wrinkles diminished, and collagen restored. Inwardly, light therapy works directly with our cells, generating an increase of ATP, the energy that fuels us. 

LED Light Therapy uses color wavelengths of visible light, each with specific skin benefits. Due to sun damage, aging, skin disorders, healthy skin cells are compromised and have a more difficult time renewing themselves normally.

But why are wellness gurus going crazy for light therapy? 

Light therapy is not that new; however, it's been gaining popularity due to its benefits, especially in the wellness industry. While everyone is eager to look younger, going under the knife is very invasive. Light therapy is not only effective and easy to use; it's non-invasive. The device needed for light therapy is usually a lamp or light therapy box. 

Is light therapy good for skin? Absolutely. And one of the best things next to the long-term effects is that light therapy can be used as laser light therapy at home. This is the most comfortable way of having the benefits of light therapy. Many celebrities themselves are opting for this route as opposed to invasive treatments.

Light is used as a source of energy, and our skin soaks it up, turning it into ATP (our life fuel). Cells reproducing faster and more efficiently brings the repair and rejuvenation of damaged cells, or, in the case of treating acne, kill bacteria. This stimulates the production of collagen and elastin, boosts circulation, and accelerates tissue repair. You simply lie underneath a light screen during the treatment while the LED light device.

What can light therapy be used for you may be wondering? It isn't only beneficial for your skin; it works directly within our cells, accelerating ATP production. This makes it helpful with overall health, physical and mental. Light exposure has also been linked to being a trigger of serotonin, the way natural light does as well. Not only does it trigger serotonin, but also melatonin, which helps regulate your sleep cycle. 

Luckily, instead of having to go to a doctor for your treatments, you have your own LED light therapy mask or device in the comfort of your home. Allowing wellness gurus and everyday people to enjoy the benefits of red light therapy. 

Light therapy devices work not only the face but as a full body treatment that can help with muscle tension and fascia. Fascia is the connecting tissue that holds every organ, blood vessel, bone, nerve fiber, and muscle in place.

Gwyneth Paltrow even explores on goop.com the many different appealing sides to it. “Light acts as a mild stressor on the body in a dose-dependent manner. We always consider stress to be a bad thing, but at low levels, stress can be good for us. It conditions our tissues and stimulates endogenous protective responses that prime us for either existing or future insult.”

Kourtney Kardashian has taken her LED light therapy mask to the public as well, promoting the device and its benefits. She enjoys both red and blue light treatments, often posting her with her at-home mask. She’s mentioned retinol use alongside the regular treatments, and other skin rejuvenating products. 

But more and more celebrities and wellness gurus are turning to light therapy for a full body treatment. Jessica Alba, alongside celebrities including Emma Stone, Chrissy Teigen, Lena Dunham, Kelly Rowland, and Real Housewives of New York City’s Carole Radziwill, have openly discussed red light therapy treatment. 

Many top skincare and wellness brands are turning to Kaiyan for their red light therapy device production. And though we produce devices that are incredibly effective, our devices are also MDA-certified and FDA-approved, giving you security in knowing your devices not only are effective but are safe. 

SAD - Seasonal Affective Disorder 101

The first formal description of Seasonal Affective Disorder (SAD), the most well-known psychiatric condition associated with seasonality in humans, was introduced in the mid-1980s by Rosenthal, who described a group of 29 patients living in a temperate climate who experienced depressive episodes characterized by hypersomnia, hyperphagia, and weight gain in the fall or winter, and whose symptoms remitted by the next spring or summer.

SAD was incorporated into the Diagnostic and Statistical Manual (DSM) of Mental Disorders III-R when “seasonal pattern” was introduced as a specifier for Major Depression and Bipolar Disorders. Subsequent revision in DSM-IV described SAD as “a regular temporal relationship between the onset of Major Depressive Episodes in Bipolar I (BPI) or Bipolar II (BPII) Disorder or Major Depressive Disorder (MDD), recurrent, and a particular time of the year.”

Today, SAD, or MDD with seasonal pattern, is defined as recurrent episodes of major depression that meet the following criteria: at least two consecutive years where the onset and offset of depressive symptoms occur at characteristic times with no non-seasonal episodes, a temporal relationship between onset of symptoms and time of year, a temporal relationship between remission of symptoms and time of year, and an outnumbering of seasonal compared to non-seasonal episodes throughout the lifetime of the patient.

Pathophysiology of SAD

To date, the pathophysiology of SAD is unclear. Early research into the mechanism of SAD focused on day length or photoperiod. This hypothesis posited that shorter days in winter, possibly mediated by a longer duration of nocturnal melatonin secretion, leads to depressed mood in susceptible individuals. To date, there is little data to support this hypothesis. Furthermore, given that bright light in the evening has not been as effective as that given in the morning, it now seems unlikely that the photoperiod is the underlying pathological mechanism of SAD.

Although some animal studies have implicated a direct effect of light on the midbrain (Miller, Miller, Obermeyer, Behan, & Benca, 1999; Miller, Obermeyer, Behan, & Benca, 1998), the most prominent hypothesis driving human studies involves disruption of circadian rhythms. Research on the role of serotonin is also active.

Circadian Rhythm

A circadian rhythm refers to the approximately 24-hour cycle of physiological processes present in humans and other animals. This cycle is governed via clock gene expression by the suprachiasmatic nucleus (SCN), the master pacemaker located within the anterior hypothalamus. Though the SCN endogenously generates circadian oscillations, SCN endogenously generates circadian oscillations, and they need to be entrained to the 24-hour day by external cues. Light exposure is the most important synchronizing agent of endogenous circadian rhythms.

Downstream of the SCN, a collection of systemically active neurohumoral networks transduce circadian information to the rest of the body. For instance, via projections to the hypothalamus's paraventricular nucleus, the activation of the SCN leads to autonomic changes, including cardiovascular modulation, and together the central, peripheral, and autonomic nervous systems collaborate to affect systemic changes. Thus, the SCN receives information about the external day-night cycle directly through retinofugal pathways and indirectly through neuromodulatory signaling. Circadian information is then relayed systemically through neurohumoral networks.

The current primary hypothesis for the pathophysiology of SAD, known as the “phase-shift hypothesis,” posits that there is an optimal relationship in the alignment of the sleep-wake cycle and the endogenous circadian rhythm. During the fall and winter, as day length shortens, the circadian rhythm begins to drift later concerning clock time and the sleep-wake cycle. This phase delay is hypothesized to bring about mood symptoms. A pulse of morning bright light generates a circadian phase advance, which is thought to correct the discordance between sleep and circadian phase, thereby ameliorating depressive symptoms. However, the phase-shift hypothesis would predict that the amount of phase correction required for each patient would depend on an individual’s PAD, which has not yet been proven.

Serotonin

Several studies have also proposed that serotonin is implicated in the pathophysiology of SAD, as selective serotonin reuptake inhibitors (SSRIs) appear to be effective in the treatment of SAD. Supporting this hypothesis, one study used Positron Emission Tomography (PET) imaging to look at binding probability at synaptic serotonin transporters in 88 normal individuals living in the temperate climate of Toronto, Canada (Praschak-Rieder, Willeit, Wilson, Houle, & Meyer, 2008). The binding probability was increased during fall and winter compared to warmer months, thus eliciting an inverse correlation between binding potential and sunlight durationsunlight duration. Of note, the largest difference in transporter binding was found in the mesencephalon, a finding consistent with animal studies demonstrating the importance of direct effects of light to the midbrain on behavior. If increased transporter activity indicated greater reuptake of serotonin during the fall/winter, and if this resulted in a lower density of cleft serotonin, then the seasonal variation in transporter activity (i.e., higher transporter efficiency in the winter) would seem to leave susceptible individuals particularly prone to mood symptoms during the darker seasons. Moreover, following BLT and during periods of remission in the summer months, the synaptic transporter activity was shown to be reduced to control levels in these patients.

Eating Disorders

BLT has also been investigated to a lesser extent in eating disorders. Because binge eating episodes have been observed to increase in fall and winter in some patients, BLT has been examined as a treatment modality for anorexia nervosa (AN) and bulimia nervosa (BN). Thus, BLT's effects on patients with eating disorders remain enigmatic. Additional studies, including larger, randomized, blinded, and controlled trials, are needed to elucidate further the role of BLT in treating this patient population. Further research might also determine whether BLT would be a useful treatment in Binge-Eating Disorder, a diagnosis new to DSM-5.

Adult ADHD

Additionally, BLT has been studied in the context of adult Attention-Deficit/Hyperactivity Disorder (ADHD), where, in addition to normal ADHD symptoms, patients often have depressed mood and difficulties falling asleep, awakening on time, and maintaining arousal (Brown & McMullen, 2001). These symptoms are indicative of a possible delay in the circadian rhythm. A case report of symptom improvement following BLT in a child with ADHD who displayed signs of delayed sleep phase also supports the idea that BLT may be useful in treating symptoms of ADHD (Gruber, Grizenko, & Joober, 2007). Whether the pathways that subserve the improvement of mood symptoms in response to BLT are the same pathways that underlie the seemingly beneficial effects of BLT in ADHD remains to be studied. While these results are promising, further studies, preferably in randomized, blinded, and controlled studies will need to be performed.

Finally

A significant immediate reduction of depression scores with light treatment can be identified after 20 minutes and reaches the maximum at 40 minutes, with no additional benefit at 60 minutes. The rate of change is steepest during the first 20 minutes of light as compared with longer intervals. Comparing the clinical impact of these durations of administration may yield different results when measured after several daily sessions. The overnight effect on circadian rhythms and sleep was not assessed in our study and is thought to impact mood regulation in SAD. Larger, prospective, controlled, and hypothesis-driven studies in more naturalistic conditions would be desirable to replicate our study results and our study results and analyze the temporal dynamic of the persistence of the immediate mood-improvement effects. Besides, in larger samples, one could define early responders and nonresponders, analyze genetic (e.g., melanopsin related genes), demographic (children, adolescents, adults, elderly, gender), physiological (e.g., pupillary responses), and clinical (e.g., abundant atypical symptoms) predictors for early response. If proven effective and efficacious, shorter exposures to bright light could become a feasible and broadly employed intervention for immediate mood improvement as an early step on the road toward full antidepressant response and remission.


REFERENCES
  • Al-Karawi D, & Jubair L (2016). Bright light therapy for nonseasonal depression: Metaanalysis of clinical trials. J Affect Disord, 198, 64–71. doi:10.1016/j.jad.2016.03.016 [PubMed] [CrossRef] [Google Scholar]
  • American Psychiatric Association., & American Psychiatric Association. DSM-5 Task Force. (2013). Diagnostic and statistical manual of mental disorders : DSM-5 (5th ed.). Washington, D.C.: American Psychiatric Association. [Google Scholar]
  • American Psychiatric Association., & American Psychiatric Association. Task Force on DSM-IV. (1994). Diagnostic and statistical manual of mental disorders : DSM-IV (4th ed.). Washington, DC: American Psychiatric Association. [Google Scholar]
  • American Psychiatric Association., & American Psychiatric Association. Work Group to Revise DSM-III. (1987). Diagnostic and statistical manual of mental disorders : DSMIII-R (3rd ed.). Washington, DC: American Psychiatric Association. [Google Scholar]
  • Benedetti F, Barbini B, Fulgosi MC, Colombo C, Dallaspezia S, Pontiggia A, & Smeraldi E (2005). Combined total sleep deprivation and light therapy in the treatment of drug-resistant bipolar depression: acute response and long-term remission rates. J Clin Psychiatry, 66(12), 1535–1540. [PubMed] [Google Scholar]
  • Braun DL, Sunday SR, Fornari VM, & Halmi KA (1999). Bright light therapy decreases winter binge frequency in women with bulimia nervosa: a double-blind, placebo-controlled study. Compr Psychiatry, 40(6), 442–448. [PubMed] [Google Scholar]
  • Brown TE, & McMullen WJ Jr. (2001). Attention deficit disorders and sleep/arousal disturbance. Ann N Y Acad Sci, 931, 271–286. [PubMed] [Google Scholar]
  • Center for Environmental Therapeutics. (2016). Retrieved from http://www.cet.org/
  • Colombo C, Lucca A, Benedetti F, Barbini B, Campori E, & Smeraldi E (2000). Total sleep deprivation combined with lithium and light therapy in the treatment of bipolar depression: replication of main effects and interaction. Psychiatry Res, 95(1), 43–53. [PubMed] [Google Scholar]
  • Daansen PJ, & Haffmans J (2010). Reducing symptoms in women with chronic anorexia nervosa. A pilot study on the effects of bright light therapy. Neuro Endocrinol Lett, 31(3), 290–296. [PubMed] [Google Scholar]
  • Dauphinais DR, Rosenthal JZ, Terman M, DiFebo HM, Tuggle C, & Rosenthal NE (2012). Controlled trial of safety and efficacy of bright light therapy vs. negative air ions in patients with bipolar depression. Psychiatry Res, 196(1), 57–61. doi:10.1016/j.psychres.2012.01.015 [PubMed] [CrossRef] [Google Scholar]
  • Deltito JA, Moline M, Pollak C, Martin LY, & Maremmani I (1991). Effects of phototherapy on non-seasonal unipolar and bipolar depressive spectrum disorders. J Affect Disord, 23(4), 231–237. [PubMed] [Google Scholar]
  • Eastman CI, Young MA, Fogg LF, Liu L, & Meaden PM (1998). Bright light treatment of winter depression: a placebo-controlled trial. Arch Gen Psychiatry, 55(10), 883–889. [PubMed] [Google Scholar]

Dreaming of Light Therapy

Light therapy is beneficial for more than just one problem. Rather, it’s an all-in-one health and wellness treatment. It helps with skincare issues ranging from acne to wrinkles to eczema by supporting the mitochondria, which in return provokes better cell production within the body and targeted areas. 

But another thing light therapy is proving to be powerful with is sleep. Sleeping disorders are more frequent than ever, with many people experiencing sleep disorders and, if not full disorder, struggle with achieving restful sleep. 

Stress and anxiety build up through the day, and our addiction to our devices greatly disturbs our sleeping habits. However, a good night’s sleep is actually one of the most important things to maintain if you want optimal health.

While there are many types of sleep disorders—insomnia, sleep apnea, restless legs syndrome (RLS), and narcolepsy—bright light therapy has proven to help reduce many of these conditions. In addition, its effects are also being studied on how they can help with Parkinson’s disease. 

Sleep onset insomnia is one of the things light therapy can effectively treat. Insomnia is the inability to fall asleep at a normal time. Though there are various reasons for insomnia, one problem stems from the advanced or delayed circadian rhythms.

There’s also advanced sleep phase disorder when you tend to feel sleepy in the late afternoon or early evening. Bedtime typically happens between 6 p.m. and 9 p.m. Early bedtime means you often wake up between 2 a.m. and 5 a.m. Light therapy here can help reset your internal clock in the early evening hours.

With delayed sleep phase disorder, you tend to stay up all night or at least a few hours, often past midnight. As a result, you also tend to wake up later in the morning, having lost a good chunk of your day. In this instance, light therapy in the morning, right after you’ve woken up, helps to advance your internal clock and makes you feel sleepy earlier in the evening, helping to adjust to a normal sleeping pattern.

And yet, light therapy treatment is proving to be the perfect solution.

In 2012, Light therapy was studied and found to be an effective nonpharmacological and non-invasive way of treating sleep disorders and improving sleep quality among elite female basketball players. Each participant within the research received14-30 minute light therapy sessions once every night for 14 nights in a row.

Research also showed improved melatonin levels among basketball players, and melatonin is a hormone that promotes sleep. Players in return experienced improved endurance performance. 

In later studies as well, light therapy has proved itself to be very effective. In 2013, a Taiwanese study looked at participants and their electroencephalography (EEG), which means they examined their electrical brain activity. They checked before, during, and after the light therapy simulation. The research suggested that light therapy is beneficial in helping people with sleep disorders. But these are the only studies that show the effectiveness of light therapy.

A study on the cognitive function of people with traumatic brain injury discovered that light therapy helped those people with their cognitive function. Light therapy helped decrease episodes of post-traumatic stress disorder (PTSD). Participants also reported better sleep during the study. 

New research from the University of Arizona Health Sciences discovered that with light therapy, people with migraines have a better chance of improving their sleep, plus act as a preventative measure for future migraines. Patients who were submitted to the research experienced better sleep and fewer headaches with light therapy.

Our minds have been occupied with a lot, with the pandemic, with people experiencing more hardships than before. Even if they’ve gotten used to it, the way of living has drastically changed. It’s no surprise that our sleep has also been affected by this. It’s reported that having bad dreams due to the ongoing pandemic isn’t anything too surprising nor impossible. 

Growing evidence suggests that light therapy can help us improve the ability to fall asleep, remain asleep and get a good night’s all in one. In times when our dreams and sleep are invaded by negative feelings related to any upsetting and unsettling occurrence in our life, light therapy can help us ease our daily stressors and might help us avoid sleep-disturbing dreams.

That said, you want the right light therapy device to help you improve your sleep. Kayian medical produces MDA-certified and FDA-approved light therapy devices to ensure you get the most out of light therapy. 

Creating Your Custom LED Mask

When we talk about skincare, we usually don’t think about customizing skincare products. The options available on the market are produced for the masses rather than for the individual. Many people with multiple skin issues struggle to find skincare products that truly speaks to their needs. However, light therapy masks can be customized to fit the individual customer’s needs.

If you’re working in the skincare industry, light therapy devices are a revolutionary step forward, as you’ll be able to provide your customers with a unique light therapy mask.

But what’s the process of creating a custom light therapy mask? Here are the six steps you need to consider when developing a customized light therapy mask.

The Six Steps to Create Your Custom Led Mask

While going through these six steps, keep your vision of your mask in mind. This will help you answer some of the questions that are going to be asked below.

What’s your Goal?

It would help if you determined your product’s goals. Who are your clients? What are their unique skincare challenges? By understanding the basics, you’ll help your company determine the right strategy when creating your customized product. Light therapy masks can be made using different LED colors for a full range of beauty treatments, including acne reduction, anti-aging treatment, and collagen production.

What Material will you Use?

You need to select the right material. Facial masks can be made from a variety of materials, each with its own advantages and versatility. There are three types of light therapy masks to consider: flexible, semi-hard, and hard.

Flexible allows users to wear it while doing their daily activities. The patented air cushions and emitting SMD LEDs are ideal for indoor and daily skincare. Semi-hard masks are for professional use and have a hard shell, while soft inside. Hard masks are powerful facial masks for professional use and come with selectable light area options. They offer a deeper light therapy experience for clients.

What Kind of Shape will your Mask be in?

Light therapy masks don’t have to come in a traditional one-size-fits-all design. Depending on your target market, you’ll be able to choose where the placement for the cheeks, forehead, and eyes will be on the mask. This gives you more control over how the mask will fit on your client’s face.

What Areas Will your Mask Treat?

A traditional mask will cover the full face. However, you may not necessarily want your mask to provide full coverage. Consider the areas of the face you’d like to treat, as you may only want to create a mask for a specific target area.

Apply for a Prototype

You’ve answered all the questions above and have a vision of how you want your mask to look. From here, we help you take your vision and use our creativity and 14 years of experience in the industry to create a mask that fits your goals.

Launch & Listen

Now that the product is created, it’s time to launch it. Before the launch, we produce pre-pilot quantities that allow us to fine-tune our devices and ensure high-quality from start to finish.

Creating a light therapy facial mask is one thing, but you want to make sure it’s achieving your goals and making your customers happy. Once your product is launched, it’s crucial to monitor product performance and listen to customer feedback.

Naturally, you don’t want your light therapy mask to be like all the others on the market. Our masks are MDA-certified and FDA-approved light therapy devices, ensuring you medical-grade quality devices for your business.


Insomnia & the Dark Side of the Blue Light

Although it is environmentally friendly, blue light can affect your sleep and potentially cause disease. Until the advent of artificial lighting, the sun was the major lighting source, and people spent their evenings in (relative) darkness. Now, in much of the world, evenings are illuminated, and we take our easy access to all those lumens pretty much for granted.

But we may be paying the price for basking in all that light. At night, light throws the body’s biological clock — the circadian rhythm — out of whack. Sleep suffers. Worse, research shows that it may contribute to the causation of cancer, diabetes, heart disease, and obesity.

What is Blue Light?

Not all colors of light have the same effect. Blue wavelengths — which are beneficial during daylight hours because they boost attention, reaction times, and mood — seem to be the most disruptive at night. And the proliferation of electronics with screens and energy-efficient lighting increases our exposure to blue wavelengths, especially after sundown.

Light and Sleep

Everyone has slightly different circadian rhythms, but the average length is 24 and one-quarter hours. The circadian rhythm of people who stay up late is slightly longer, while earlier birds' rhythms fall short of 24 hours. Dr. Charles Czeisler of Harvard Medical School showed, in 1981, that daylight keeps a person’s internal clock aligned with the environment.

Is Nighttime Light Exposure Bad?

Some studies suggest a link between exposure to light at night, such as working the night shift, diabetes, heart disease, and obesity. That’s not proof that nighttime light exposure causes these conditions, nor is it clear why it could be bad for us.

A Harvard study shed a little bit of light on the possible connection to diabetes and possibly obesity. The researchers put 10 people on a schedule that gradually shifted the timing of their circadian rhythms. Their blood sugar levels increased, throwing them into a prediabetic state, and leptin levels, a hormone that leaves people feeling full after a meal, went down.

Exposure to light suppresses the secretion of melatonin, a hormone that influences circadian rhythms. Even dim light can interfere with a person’s circadian rhythm and melatonin secretion. A mere eight lux — a level of brightness exceeded by most table lamps and about twice that of a night light — effects, notes Stephen Lockley, a Harvard sleep researcher. Light at night is part of the reason so many people don’t get enough sleep, says Lockley, and researchers have linked short sleep to increased risk for depression, as well as diabetes and cardiovascular problems.

Effects of Blue Light and Sleep

While light of any kind can suppress melatonin's secretion, blue light at night does so more powerfully. Harvard researchers and their colleagues experimented comparing the effects of 6.5 hours of exposure to blue light to exposure to green light of comparable brightness. The blue light suppressed melatonin for about twice as long as the green light and shifted circadian rhythms by twice as much (3 hours vs. 1.5 hours).

In another blue light study, researchers at the University of Toronto compared the melatonin levels of people exposed to bright indoor light wearing blue-light-blocking goggles to people exposed to regular dim light without wearing goggles. The fact that the hormone levels were about the same in the two groups strengthens the hypothesis that blue light is a potent suppressor of melatonin. It also suggests that shift workers and night owls could protect themselves if they wore eyewear that blocks blue light. Inexpensive sunglasses with orange-tinted lenses block blue light, but they also block other colors, so they’re not suitable for use indoors at night. Glasses that block out only blue light can cost up to $80.

LED Blue Light Exposure

If blue light does have adverse health effects, then environmental concerns, and the quest for energy-efficient lighting, could be at odds with personal health. Those curlicue compact fluorescent lightbulbs and LED lights are much more energy-efficient than the old-fashioned incandescent lightbulbs we grew up with. But they also tend to produce more blue light.

The physics of fluorescent lights can’t be changed, but coatings inside the bulbs can produce a warmer, less blue light. LED lights are more efficient than fluorescent lights, but they also produce a fair amount of light in the blue spectrum. Richard Hansler, a light researcher at John Carroll University in Cleveland, notes that ordinary incandescent lights also produce some blue light, although less than most fluorescent lightbulbs.

Protect Yourself from Blue Light at Night
  • Use any of our red light devices for night lights. Red light is less likely to shift circadian rhythm and suppress melatonin.
  • Avoid looking at bright screens beginning two to three hours before bed.
  • If you work a night shift or use many electronic devices at night, consider wearing blue-blocking glasses or installing an app that filters the blue/green wavelength at night.
  • Expose yourself to lots of bright light during the day, which will boost your ability to sleep at night, as well as your mood and alertness during daylight.

Preparing your Skin for Light Therapy

Can I Use Serum With LED Mask?

It is a question that many people have asked — Can I use the serum with LED light therapy?

Our skin is exposed to harsh environmental factors such as sun, wind, cold, and dust daily. These factors tend to attack our immune system causing it to weaken over time.

When this happens, it allows harmful viruses and bacteria to attack our body, leading to acne breakouts and other skin issues such as dark spots and wrinkles. Acne creams are one way of reducing the symptoms associated with this skin condition. However, these can be irritating to your skin, resulting in unwanted side effects such as redness, irritation, and dryness.

The same can also be said for light therapy, which can have its own side effects. Side effects of LED light therapy include itching, burning, and pain. In fact, most users had reported experiencing these side effects when they first started using LED technology. If you were to use any acne medication type, whether prescribed by your doctor or over the counter, the results would depend largely on the person using the medication.

For example, it could take anything from a few days to a few weeks for acne to clear up. Another point to remember is that while certain medications do show better results for some people, they may not work for you at all.

This is because everyone has different skin types, responds differently to treatments, and requires different times to clear away acne completely.

Some people have found success in using LED therapy with a variety of skin creams. However, there is a downside to using this method. LED light therapy does not help remove excess dead skin cells, as some acne medications do. This means that the acne cream will just be left in place and continue to produce side effects for all patients. Besides, side effects can be more severe than a single acne medication dose when used over a long time when used over a long time.

Before you try to use a serum with an LED mask, you should consult with a dermatologist who can advise you on whether or not LED light therapy is right for you. LED light therapy is safe when administered by a certified medical professional. It can be used safely, even if you have sensitive skin, as long as you choose your doctors wisely. Before any treatment is begun, the medical professional will test your skin to determine what type of acne you have. Testing will determine whether your skin is allergic to any light-emitting diodes in the device used.

The last question to answer is, “How effective is Acne treatment with LED Light?” To answer this question, you will need to look at the results you get from the treatment. If you see immediate results after the treatment, it will likely react to the device's light and not the treatment itself.

However, if you don’t see good results after a month of continuous treatment, it is important to determine why the treatment is not working. It may be that you are allergic to any of the ingredients in the product, or it may be that your skin is not receptive to the treatment.

Hydrated Face For LED Mask Results

The serum is good for hydrated face for LED Mask. It can hydrate the skin by absorbing moisture, providing a slight lift to the skin, and removing any oil or makeup that you are using. The serum also contains vitamins and antioxidants that will help fight against free radicals in your body. Free radicals are harmful agents that have been linked with causing cancer.

By fighting against these harmful agents, Serum is good for hydrated face for LED Mask. People who have used Serum have claimed that the hydrated face and LED Mask work very well together. I have also used Serum on my skin, and I must say that the results were really amazing. In fact, I would go on to say that Serum is so good for hydrated face for LED Mask that I will be using it every single night before bed.

If you don’t have much experience making skin look hydrated, this is the forum for you. Let us first examine the ingredient list of Serum.

This product's main ingredients are Hyaluronic Acid, Vitamin C, Retinol A, Alpha Hydroxy Acids, Vitamin E, DMAE, Peptides, and Glycerin, Ferulic Acid, Aloe Vera.

  • AHA kills the bacteria causing acne and helps to get rid of blackheads.
  • Sodium Laureth Sulfate helps in cleaning the skin by getting rid of dead skin cells and excess oil.
  • Salicylic Acid gets rid of pimples and acne scars, and Glycolic Acid is good in treating acne scars.

All of these ingredients are perfectly good for your hydrated face for LED Mask.

  • Now let us move on to how does Serum works to get rid of the facial puffiness.
  • When you are applying Serum on your hydrated face for LED Mask, you are putting on a layer of serum to the surface of your face.
  • As the serum gets applied, it works its way down into your skin and starts working as a moisturizer.
  • This is why this particular product is top-rated as it works as a good moisturizer without over-drying the skin.
How to Prepare Your Skin For a Red Light Therapy Session?

There are different methods used to prepare your skin, but essentially they all work in the same way: removing all the oil and dirt from the skin and then cleaning it. When I talk about cleansing, I’m talking about daily skincare maintenance products. If you want to know how to prepare your skin for a red light therapy session, this is the part that you need to read.

Most people have no idea how their skin looks like, so when they go into the doctor’s office and they've asked if they’ve had a photodynamic therapy or a laser treatment, they’re not aware of what treatment they might have received.

  • The skin absorbs red light from the sun, and in return, it produces negative ions.
  • These are similar to the particles produced by an activated oxygen generator (you know those things at the gym).
  • During photodynamic therapy, the skin cells absorb the energy from the lasers' red light, which causes the release of more negative ions, which then penetrate deeper into the skin.
  • They’re working like the “batteries” on your car — they give the batteries extra power and allow the car to run much longer.
  • If you want to learn how to prepare your skin for a red light therapy session, you must remove all the grime from your face and neck before the session.
  • Cleansing is one of the most important steps to remember in preparation.
How to Prepare Your Skin for Red Light Therapy Session by Using Non-Dry Cleanser

You might need more than just a good cleanser when trying to prepare your skin for red light therapy. Your cleanser is your friend when you are trying to remove all the dirt and excess oil from your face, but what if your cleanser is too harsh on your skin? If you have dry skin, using a cleanser containing too harsh ingredients may cause dryness, making it harder for you to remove those excess oils from your face.

When you prepare your skin for red light therapy session using the non-drying cleanser, make sure that you would be using a toner with antioxidants and anti-inflammatory ingredients to increase the collagen level the skin.

This will help keep your skin healthy and younger-looking.

Caution: Lotion and Moisturizers For LED Masks Are Not Recommended

The use of moisturizers and lotions is not recommended for LED masks because it will damage your skin. There are also cases wherein people who used such products ended up suffering from adverse effects.

The ingredients in these products may be too strong for the skin to be able to absorb.

You can prevent this by using only non-comedogenic lotions and moisturizers for LED masks.

  • This way, the product is less likely to irritate your skin. In addition to that, you can also use other types of products designed for sensitive or dry skins to use on your face during the event's preparation.
  • However, there are cases wherein people who have been using such moisturizers and lotions as part of their LED facial make-up mask ended up suffering from adverse effects.
  • In these cases, the products were not properly applied to the skin, and the amount that was applied was also insufficient.
  • Because the skin did not get sufficient moisture, the cells underneath the skin's surface could not repair themselves properly.
  • This will result in damaged skin, which will cause more breakouts than before.

Aside from lotion and moisturizers, it would help if you also stayed away from mineral oil, alcohol, and preservatives. These ingredients are not good for your skin, as they can cause dryness and irritation. It would help if you also stayed away from using creams and lotions with fragrance, which can only irritate your skin even more. Instead, look for serums.

If you want to have a glowing complexion without enduring any adverse effects, use a good quality face serum.

Prepare Your Skin For Red Light Therapy by Removing Sunscreen

You probably have heard that it is unsafe to use the sun’s UV rays at home, especially if you use a tanning lotion or a self-tanning lotion. But did you know that it is also not safe to use self-tanning products like tan accelerators and sunless tanning pills to prepare your skin for red light therapy sessions?

This defeats the purpose of using red light therapy, and you must remove sunscreen so that your face and skin are completely ready to receive the red light therapy. This is because self-tanning products contain ingredients that can affect the skin in adverse ways and block the beneficial deep penetrating infrared wavelength from 650nm to 850nm.

How to Prepare Your Skin For Red Light Therapy by Removing Makeup

If you have chosen to have laser acne treatment and you are wondering how to prepare your skin for the red light therapy, you will want to take a moment to learn how red light therapy works before getting started.

Before your session begins, you will be given a short amount of time to get ready for the procedure. This is because your skin needs to be very clean and free of any makeup. Your skin needs to be completely dry before the procedure can begin.

If there is any moisturizer on your skin when you arrive for your appointment, you will have to remove it before your treatment.

Your doctor will ask you several questions about your skin during your appointment, including what type of skin you have and whether or not you have any allergies. During this time, they will also determine if you are a good candidate for the procedure. If you are cleared for the procedure, your skin will be exposed to an intense red light level. This is one of the most effective ways to get rid of acne, and it can also help prevent scars and aging from occurring on your face.

The amount of time that it takes to get your skin prepared for red light therapy varies. In most cases, it is normal to have it take from fifteen to thirty minutes to prepare your skin for the procedure. You may have to remove any makeup at this time as well.

How to Prepare Your Skin For Red Light Therapy by Exfoliating?

When a patient is getting a therapy session done, they will be required to go to the spa or beauty clinic to be given a facial.

A therapist will then start by cleaning the face thoroughly. After the initial cleaning process, the therapist will apply a chemical that will help exfoliate the skin.

This process can irritate the skin, so it is important to prepare your skin before undergoing this procedure. Some common preparations that people use include salicylic acid, alpha hydroxy acid, retinoids, glycolic acid, and other peel-type products.

The exfoliating procedure aims to help the skin cells shed off dead skin cells and replace them with new cells.

This is why it is important to remove all traces of dead skin cells from your face before undergoing the procedure.

It may seem odd at first, but if you want to get the best results from the procedure, you need to gently exfoliate your skin.

Prepare Your Skin For Red Light Therapy With Moisturizers

When you prepare your skin for red light therapy, you are basically preparing to expose the blue spectrum laser's high intensity and the eventual dry out of the epidermis. The skin must be prepared using a good cream containing Reductase or Salicylic Acid, or by exfoliating the skin using a scrub.

After the procedure, you will need to have topical products applied to your skin to prevent the skin from cracking and peeling. This will also help improve your appearance and prevent future scarring. Removing moisturizers before the therapy can be helpful. This is because the skin’s cells will still be in a dormant state when you receive the treatment; therefore, your skin is not at risk for the dryness associated with moisturizers.

This will also improve your skin's look, especially for those who have undergone this procedure many times. However, you must be youthful if e to remove moisturizers in preparation for the session, as some creams may cause excessive dryness and irritation. Once you are prepared for the session, you can expect the doctor to start the red light therapy by generating a small amount of blue light on your skin's top layer.

The light then travels through the skin, reaching the deepest layers where most of the damage occurs. When the blue light is emitted, it is believed that the cells below the surface of the skin begin to absorb the red light, helping to repair the skin. The increased circulation and nutrient absorption help to rejuvenate your skin, leaving it looking younger and healthier than ever before.


Celebs are Loving Red Light Therapy

When it comes to anti-aging remedies, celebrities are at the forefront of all the latest treatments. For years, Hollywood’s elite have opted for chemically-induced anti-aging treatments, like botox and chemical facial peels. But it looks like Hollywood is stepping away from harsh treatments, particularly with the prominence of clean and holistic beauty trends in recent years. Now, many celebrities have decided to avoid the needles and knives, opting for natural alternatives, instead. 

To prepare for red carpet events, celebrities are flocking to red light therapy for natural, non-invasive anti-aging treatments. Kourtney Kardashian, true to Kardashian form, was relatively early to the red light therapy scene in 2016, when she posted a photo of herself in wearing a red-light mask, touting the many anti-aging benefits of the treatment. Since then, other celebrities such as Kelly Rowland, Emma Stone, and Chrissy Teigen have openly shared their positive experiences using red and blue light facial therapy treatment. 

Some actresses love red light therapy so much, they have their own equipment set-up in their homes. Back in 2018, Olivia Munn told US, "I have my own facial set up, I've got the professional-grade products and machines...But one of the best things is the red and blue light mask."

Red light therapy works by increasing blood flow and oxygen, feeding the cells the necessary energy they need to speed up the cellular process. This process helps decrease inflammation and enhance collagen production, which reduces the appearance of fine lines and wrinkles for tighter and supple skin. 

Jewelry designer and reality T.V. star Kristin Cavallari told US that she keeps away from Botox, but shared that

"I use red light therapy twice a week to prevent lines and wrinkles."

But red light therapy isn’t only for wrinkles and fine lines. Celebrities are expanding the use of red light therapy and using it for their entire bodies. Why? Well, house-friendly red light devices help treat inflammation, joint pain, and muscle soreness. 

Ara Suppiah, M.D., an assistant professor at the University of Central Florida Medical School and an emergency and sports medicine physician, told Us Weekly that “increased energy within a muscle cell allows it to contract harder and repair itself after training.” Since red light increases cell energy, it subsequently helps organs, joints, and muscles to repair themselves and function optimally. 

The list of celebrities who swear by red light therapy continues to grow by the day. Joan Smalls and Bella Hadid visit celeb aesthetician Joanna Czech, who is well-known for using her light treatments on her clients. Riverdale’s Lili Reinhart and Camila Mendes also posted photos from Joanna Vargas’ red light bed.

So, it’s clear that the verdict is in: celebrities are loving red light therapy and the multiple external and internal benefits that come along with it. But do you need to undergo expensive treatments to get a taste of the benefits? Nope! You don’t need to be a celebrity status to enjoy the benefits of red light therapy - even in the comfort of your home. 

Luckily, red light therapy is now available for in-home treatment with Lunas’ FDA and MDA-approved red light therapy devices. By having a red light therapy device in your home, we can all attain our own red-carpet glow without the celebrity price tag.

Photo Credit: By Tinseltown - Shutterstock

How to Integrate Light Therapy into your Lifestyle

Our lives are busier than ever, and even though red light therapy sounds like something that could significantly benefit you, we know you might be thinking: “when will I have time for red light therapy?” 

Part of the beauty of red light therapy is that you don't need to change your current routine or lifestyle to enjoy its benefits: if you're someone whose day is busy in front of a desk, you can turn the device on while you work; or if you have easy-going mornings but hectic afternoons, you can enjoy your morning coffee while using our red light therapy device. Or, you can turn on the panel while you’re unwinding with a movie in the evenings –– the options are endless.  

Red light therapy treatment isn’t supposed to take over your day and cause an inconvenience. With an at-home red light therapy device, you make the rules. 

That said, you may be wondering what’s the best time of day to use our red light therapy devices. Well, there are a couple of ways you can integrate red light therapy into your lifestyle. 

There are three main parts of the day: morning, midday, and evening. Though you’re able to use red light therapy any time of the day, some parts of the day can be more effective than others, particularly given your personal health and wellness needs. 

If you’re someone who’s suffering from a sleep disorder, then you may want to focus on using red light therapy during the mornings and evenings. For sleep conditions, using red light therapy around sunrise or sunset are the best times of the day. Why is that? 

It has to do with our biological circadian rhythm, which is the natural internal process that helps regulate your sleep cycle within a 24-hour day. To optimize your circadian rhythm and improve your sleep cycle, you need to sync with your natural sleep rhythm. By doing so, you reduce sleep inertia, insomnia, and other sleep disorders. 

When regulating your circadian cycle, your body releases a hormone called melatonin. This particular hormone is the highest in the blood at night and optimal for helping you fall asleep. When using red light therapy at night, it can help you enhance your natural melatonin production

When using red light therapy in the morning, exposure to light helps stop melatonin production, giving your body a natural energy boost. So, either time of the day––morning or night––can be an incredible time to help your body reset its circadian rhythm. 

You don’t need to schedule off your morning for red light therapy treatment. While you’re eating your breakfast or going through your emails, you simply turn on your red light therapy device and enjoy 10 to 15 minutes of treatment. 

Or, in the evenings when you’re cozied up on the course, washing the dishes, or sitting in bed with a book, turn on your red light therapy panel to help regulate your sleep cycle, mood, and overall health. 

If you can’t manage to use red light therapy in the morning or evening, you can always have a treatment in the afternoon, as well. If you’re dealing with a sleep disorder or seasonal depression, we recommend morning or evening treatment. However, midday treatment will also provide you with a load of benefits, including collagen production, decreasing symptoms of depression, improving sleep disorders, and non-seasonal Bipolar depressive episodes. 

Whatever the condition may be, whether it's a sleeping disorder, skin condition, or depression, Lunas red light therapy devices promote cellular healing from the inside out. What’s important is you find the time of the day that best suits your body’s needs. Everyone is different, so it’s important to find out what works for you and your unique routine and lifestyle.

Red and Blue LED Light on Milk Yield in Dairy Cows

Ruminant nutritionists formulate rations balanced according to the nutritional needs for the ruminant at a specific production level. The assumption being that the cows will eat everything they offered. However, cattle can select their feed, as they put together feed using their tongue and lips. Sorting has been studied most in cows al mixed ration (TMR) since it is often is oftenibitum, allowing cows to pick the feed particles they prefer and still reach the total dry matter (DM) they want. The TMR reports show that the most likely sorting is in favor of the short particles (mostly concentrate) and against the long particles (forages). Therefore, the feeding behavior of the cow modulates the amount of feed she eats, the nutrients she gets, rumen health, and ultimately her milk production.

Several methods have been used to try and reduce feed sorting in dairy cows. Recently, a long day photoperiod has been reported that could lower feed sorting against long particles. Today, Kaiyan provides advanced LED light equipment that is available for commercial use. The LED wavelength can be adjusted to the desired output.

Blue and red wavelength light has attracted interest in dairy barns. The cow eye is not sensitive to a red light, and therefore red light has been suggested as an option for illumination when people need to work with the animals during a time of the day when the cows have night. In humans, blue light is known to cause a carryover effect with increased activity after the light is turned off. If cows respond similarly to blue light, it may be interesting to include blue light in the dairy barns in the late afternoon or evening to stimulate activity during the night. This is of particular interest for automatic milking systems since they require cow activity around the clock. Solutions for dairy barns that include periods of the day with more red or blue LED light are already available on the market, as we now have fixtures of white LED light.

Eating Behavior of Dairy Cows

Encouraging DMI to promote milk production is one of the primary objectives for dairy farmers. The daily eating time, selection, number of meals per day, duration, and number of eating occasions per day are important aspects of feeding behavior.

Factors that Influence Eating Behavior

The environment, age of cattle, teeth condition, feed composition, and processing influence eating behavior. Just like grazing cattle, group-housed cows synchronize their behavior, including eating when kept indoors. The eating behavior of cows is controlled by social interactions, management practices, the environment, and health. Long ago, dairy cows were thought to be crepuscular eaters, motivated by sunrise and sunset timing to go for grazing. However, studies reported that fresh feed delivery timing had more influence on the feeding behavior of dairy cows kept indoors than the time of day. Also, studies found that daily eating time distribution changed following an increase in feed delivery frequency in group-housed dairy cows. The first hour and a half after fresh feed delivery is the period of peak eating activity. Little effect on cow behavior was observed when feed push-ups were done while still some feed in the trough. The feed trough design also affects feeding behavior as cows prefer eating from a feed trough that allows their head to be in a natural grazing position than having their head in an elevated position.

Types of Lights Used in Dairy and the Newly Available Light Sources

Common light sources used in dairy facilities are fluorescent and metal halide lights. During the last few years, LED lights have also become available for animal housing. This is not a new technology; LED light has been used in plant growth research since the mid-1980s but has been costly; hence limited to research only. However, 19 the Haitz’ Law as projected by Steigerwald et al., has come to action, that every decade their cost will decrease by 10 whereas their performance advances by a factor of 20. Now they have become affordable and advanced white LED lights thereby increasing their potential use in animal houses commercially

Advantages of LED Lights

It is possible to adjust the light intensity and spectral composition of LED lights mimicking that of natural day sunrise and sunset, making it possible to control color combinations, e.g., green, blue, and red. A LED light's lifespan is longer than that of fluorescent lights, around 100 000h compared to 8000 h. Furthermore, LEDs thermal output is low, saving energy, containing no mercury, efficient photoelectric conversion, and easy-to-contact to digital control systems making photoperiod management easy, for example, in dairy barns. Due to their long life span, they can decrease production costs as they do not need regular replacement and cuts off labor costs and the often-high risk work task of replacing lights since most barns have very high ceilings. The white LEDs produce light in the wavelength that cows can detect better, with peaks of emission around 460nm and 550.

In one study, ten multiparous pregnant Swedish Red cows in post-peak lactation were used. Cows were housed in a tie-stall barn. They were subjected to a 33-day red or blue LED light treatment during a long day photoperiod with 16 hours day and 8 hours night. Cows were fed silage and concentrate separately. Silage was fed three times a day, ensuring ad libitum intake with 5–10% orts. The concentrate was fed four times per day. Samples of silage were collected thrice a day, and individual orts were collected at the end of the day and the night. Data for eating behavior and milk yield were collected five days before and five days after the treatment period. Eating behavior was determined using the difference in the distribution of fractions of different straw lengths in the silage fed and orts during daytime and night time. A 2-screen Penn State Particle Separator (PSPS) (19mm and 8mm) with a solid bottom pan was used to determine the distribution of large, medium, and short silage fractions. Treatments did not affect total DMI. Overall, cows sorted for the large fractions against the medium and short fractions. During the LED period, there was a difference (P<0.001) in sorting between Red and Blue cows during the daytime. Cows on the Red LED light are sorted for the short fractions during the daytime. Blue cows showed different sorting (P<0.05) during day and night. Their sorting for the large fractions was more pronounced during daytime than night. Milk yield did not change during the trial and did not differ between the Red and Blue groups. In conclusion, sorting activity was greater during the daytime in the LED period, which could have been influenced by the LED light. Interestingly cows seem to have better vision in red than blue LED light. Furthermore, it also possible that the LED light maintains milk yield since no change was observed during the four-week trial in post-peak lactation.

Bear, Wolf, Lion or Dolphin: How Understanding your Sleep Type Will Change your Life

Sleep is big business these days — one in three people are believed to experience sleep deprivation — and everyone is keen to rely on the latest fashionable theory.

For years, sleep cycles were divided into two categories. People who enjoy mornings were known as “early birds.” And those of us who prefer staying up late were labeled “night owls.”

Well, step-aside birds. Mammals are the new name of the game. That’s right; scientists now believe there are four ways to classify sleep/wake cycles. In the science world, these classifications are known as chronotypes.

Chronotypes describe the periods when your body wants to sleep and when it wants to be awake. And to make it easier, the chronotype categories are named after animals. Our natural sleep tendencies are now categorized as bear, wolf, lion, and dolphin.

It is crucial to understand your animal chronotype. Once you do, you can start to schedule your life around your body’s natural cycles. Kaiyan Medical suggests that this may help you sleep better and feel more productive at work.

Two Animals are not Enough

People have different circadian rhythms. That’s just a fact of life.

Science shows that:

“The human circadian system actively synchronizes to the 24-h day via environmental signals of light and darkness.”

Circadian? A 24-hour cycle. It’s your body clock. Sleep psychologists reckon they can determine our natural sleeping patterns. By understanding our own, we can have a happier, more productive life.

Now, Chronotype is a term that describes a person’s natural rhythm. And it doesn’t only relate to sleep. Chronotypes influence all primal instincts.

Author Michael Breus, Ph.D., recently suggested that there are 4 natural chronotypes. And he named these after 4 animals that follow similar sleep/wake patterns. So, say goodbye to night owls and early birds. Wolves, lions, bears, and dolphins are the new circadian rhythm mascots.


The Chronotypes

Check out the chronotypes below and let us know in the comment section which one sounds like you!

Wolves

Alright, night owls, this is your group. Just like these nocturnal creatures, you are most alert at night. Wolves tend to stay up later and struggle with waking up early.

Only about 15% of the population falls into this group. Wolves are more productive in the later afternoon and evening.

Sleep experts recommend that wolves set their alarm for 7 a.m. (snooze for 30 minutes) and go to sleep by midnight.

Lions

Lions are the new early birds. Like these wild cats, you are most alert in the morning. You have no trouble waking up and getting to work. But, lions tend to feel the afternoon slump. And by the evening, they feel drained.

About 15% of the population identifies as a lion. Sleep experts recommend that lions wake up around 5:30 a.m. and go to sleep by 10:30 p.m.

Bears

No, you don’t need to hibernate. But, like these diurnal (awake during the day, asleep at night) creatures, you follow the solar cycle. Bears generally feel awake during the day and need 8-hours of solid sleep at night.

About 50% of the population falls into this category. This group is productive in the morning and struggles with the mid-afternoon slump. Sleep experts recommend that bears wake up around 7 a.m. and go to sleep by 11 p.m.

Dolphins

Dolphins “only sleep with half of their brain at a time?” Sound familiar? Well, this is the insomniac (often self-diagnosed) group. You might be anxious and have trouble turning your brain off at night. Dolphins usually don’t get a complete night’s sleep.

About 10% of the population falls in this category. And even though they wake-up tired, dolphins are most productive by mid-morning.

Sleep experts recommend that dolphins get up around 6 a.m. and try to sleep around midnight.

Sleep Like an Animal

Who doesn’t want a better night’s sleep and a more productive day? Start scheduling your days based on your chronotypes! Once you know more about your chronotype, you can form sleep patterns that work with (not against!) your body’s natural rhythms.

So what are you waiting for? Here in Kaiyan, we are embracing our inner animals and start following our optimal sleep schedule.



Sources:

Fischer, Dorothee et al. "Chronotypes in the US – Influence of age and sex." PubMed, 21 Jun. 2017, www.ncbi.nlm.nih.gov/pmc/articles/PMC5479630/

Bellis, Rich. "How To Design Your Ideal Workday Based On Your Sleep Habits." Fast Company, 26 Nov. 2017, www.fastcompany.com/40491564/how-to-design-your-ideal-workday-based-on-your-sleep-habits

Levi, Anthea. "This Is the Best Time of Day to Do Everything, According to Your Chronotype." Health.com, 31 Oct. 2016, www.health.com/mind-body/how-to-get-more-energy-chronotype

Stretch Marks & Light Therapy

Why Do We Get Stretch Marks?

A stretch mark is a type of scar called striae, meaning “thin, narrow scar”. In people who develop stretch marks, the skin has stretched faster than it can grow, such as during pregnancy, growth spurts, or rapid fat or muscle gain. The abrupt stretching causes the collagen and elastin proteins responsible for the skin’s structure and elasticity to rupture. This, in turn, causes the dermis to tear.

As the dermis tears, the body’s healing mechanisms spring into action to close the wound as quickly as possible to prevent infection and further damage.

Normally, as the skin regenerates and grows, it’s an elegantly organized latticework of collagen and elastin proteins. But when the skin tears, the body doesn’t have time to build an elegant structure to fill in the gap. Time is of the essence in any wound repair, including torn skin.

The collagen clumps together hurriedly, aiming for efficient closure of the wound before infection can set in. “Scarring is the result of a system that has learned to respond extremely quickly to a wound,” says Dr. John Newman, a cosmetic surgeon and researcher at the Laser Center of Virginia in Virginia Beach.

This haphazard process results in tough and functional but unattractive tissue — what we know as a scar. “It is kind of like nailing down a crisscross of two-by-fours over a hole in a deck,” says Newman. “It seals the hole, but it doesn’t look very nice.”

Newly formed stretch marks are darker than the surrounding skin and can be slightly raised, itchy, or painful. If they’re left untreated, they become permanent scars. Their color will lighten, and their appearance will fade below the top layer of the surrounding skin.

The bigger mystery is why stretch marks don’t disappear over time as the skin regenerates. The key lies in the information that emerging cells receive from adult cells in the area. Skin cells, whether they’re normal cells or scar cells, regenerate about once every 30 days. Growth of new skin cells begins at the bottom-most layer of the scar, and older (dying) cells are pushed to the surface where they naturally slough off.

However, Neuman explains that that that that emerging cells “learn” from their immediate neighbors and predecessors and develop the same characteristics as ir replacement their replacement cells. As a result, any emerging cell in contact with scar cells will become new scar tissue rather than normal skin tissue.

Red Light Therapy For Stretch Marks

If you have tried to get rid of stretch marks, perhaps you’ve used specialized creams that contain retinoids. These work to some extent, but only if you catch your stretch marks early and treat them while they’re still forming. Retinoids work by stimulating collagen production. However, they can irritate sensitive individuals, and doctors often recommend that pregnant women avoid anything containing retinoids.

Another common treatment, known as microdermabrasion, essentially involves “sandblasting” the skin with tiny crystals. This sloughs off dead skin

cells and stimulates the production of collagen. Microdermabrasion is a fairly harsh treatment that can lead to irritation and damage, especially to sensitive skin.

The most extreme treatment for stretch marks is plastic surgery, such as a mini tummy tuck. This may be effective, but there are risks associated with any invasive procedure and the high cost.

Is there a better option for restoring the appearance of the skin? The answer is yes, absolutely. Also known as photobiomodulation and low-level light therapy (LLLT), red light therapy improves skin appearance, reduces signs of aging, treats chronic skin conditions, reduces scarring, and promotes skin wound healing.

When red light therapy is used, visible red light and invisible near-infrared (NIR) light are applied to the skin with LED bulbs' devices. Wavelengths of light are measured in nanometers (nm), with red light ranging from 630nm to 660nm and NIR light ranging from 810nm to 850nm. Human cells respond favorably to these wavelengths, similar to how natural sunlight affects plant cells by stimulating more energy and optimization of cell function.

When the red light is shone on bare skin, it soaks into the mitochondria, colloquially referred to as the powerhouses of cells' energy factories. The mitochondria are, in turn, stimulated to produce more adenosine triphosphate (ATP), which is the primary cellular fuel. This energizes cells to perform their normal functions, from fighting off pathogens to performing repair and regeneration.

Improved Blood Flow

Proper healing relies on good circulation to the skin. Red light promotes the proliferation of endothelial cells, which make up the inner layer of capillaries (the tiny blood vessels that deliver oxygen and nutrients throughout the body). This was the focus of a 2017 study by a team of researchers from Austria, who found that red light consistently increased migration and proliferation of endothelial cells.

Without proper blood circulation, there would be no healing since endothelial cells also deliver white blood cells to the sites they need. In skin wound healing, white blood cells are necessary to protect the vulnerable area from infection while the wound closes up.

Reduced Inflammation

Acute inflammation results in the redness that’s noticeable in fresh stretch marks. This is a normal and necessary part of the tissue regeneration scar's process. Acute inflammation, which is a function of the immune system, actually sets the stage for normal tissue repair and regeneration. Inflammation is quickly followed by the production of new skin structures — which, as previously described, are hastily assembled to ensure that the torn skin doesn’t become infected.

But sometimes, the inflammatory process continues after the wound has healed, leading to chronic inflammation. It can lead to a variety of widespread problems throughout the body, including disease. “Some inflammation is good,” says Dr. Robert H. Shmerling, an associate professor of medicine at Harvard Medical School. “Too much is often bad. The goal is to recognize when inflammation is simply doing its job, and when it can potentially cause problems.”

Hundreds of studies have shown how red light therapy can significantly reduce inflammation. Many of these were conducted by Dr. Michael A. Hamblin, an associate professor of dermatology at Harvard Medical School and a noted expert on red light therapy. In the final report of a 2017 study, Hamblin refers to red light therapy’s “pronounced anti-inflammatory effects.”

Mobilize Stem Cells

During the skin-rebuilding phase, stem cells, which are unspecialized “master” cells, mobilize to the site and develop into most any type of specialized cells that are needed by the body. Ideally, they develop into normal skin cells, rather than scar tissue, to replenish damaged or destroyed cells due to skin tearing.

Red light has been shown to activate stem cells. As Barbara Gefvert, editor-in-chief of BioOptics World, explains: “Recent research shows … that noninvasive application of light can boost the natural growth of an individual’s own stem cells to enable exciting new treatments.” Stem cells can assist with the tissue regeneration process and stimulate normal and healthy behavior in existing cells. This can prevent the formation of new stretch marks and gradually reduce the appearance of existing stretch marks.



Keep Your Skin Healthy with Red Light Therapy

Skincare doesn’t just affect the way you look. It also plays a huge role in your overall health — from body temperature to hormone regulation to your immune system. If you’re into skincare as much as we are, one of the many ways that can help you keep your skin healthy is red light therapy. In this article, we’ll take a deep dive into why you should take care of your skin, and we’ll also discuss how red light therapy devices can help you achieve your skin goals.

Are you ready? Let’s go straight into it.

Why Do You Need to Take Care of Your Skin?

As the largest organ in our body, your skin is your body’s first defense line to bacteria, germs, viruses, etc. It’s a vital part of the immune system and some processes in your body, such as temperature control, blood circulation, and hormone production.

Main Functions of the Skin

Let’s take a look at the skin's main functions to help you understand how essential it is for you to take care of this vital organ.

1. Defense and Immunity

The skin is an active immune organ, and it serves as our physical barrier from the dangers of the environment. It helps protect our bodies from diseases, germs, viruses, dirt, UV radiation, and potential thermal and physical injuries. It also helps detect and fight off infection, toxins, allergens, hazardous substances, and carcinogens.

2. Temperature Regulation

Aside from protecting us from extreme cold or heat, the skin also helps prevent moisture loss, keeping us from being dehydrated.

3. Sense of touch

The skin has a somatosensory system that is composed of touch receptors and nerve endings. This system is responsible for the sensations we feel, including pain, pressure, vibrations, smoothness, roughness, heat, cold, tickle, itch, and more.

4. Storage and Production of Vitamin D

Your body also uses your skin's deeper layers to store metabolic products, fat, and water. The skin is also responsible for producing vitamin D, supplied in the body when the skin gets enough sunlight exposure.

5. Beauty

Need we say more? Your skin plays a huge part in your appearance. Of course, when your skin is healthy, you also look glowing, radiant, and definitely more attractive.

Red Light Therapy and Keeping Your Skin Healthy

Before we proceed with the “how,” let’s first define what red light therapy is. Red light therapy is a non-invasive treatment option for different kinds of medical conditions. It is also used for health improvement and various aesthetic procedures.

Decades ago, red light therapy machines were only available in clinics, high-end salons, and spas. Nowadays, red light therapy devices can be bought and used by anyone. In fact, you can do red light therapy at the comfort of your home and incorporate it into your skincare routine.

How Does Red Light Therapy Work?

Red light therapy works by delivering wavelengths of red and near-infrared (NIR) light to our cells and skin. Besides helping enhance cellular function, red light therapy also helps stimulate the mitochondria and produce ATP (adenosine triphosphate) energy. This treatment option usually takes only about 10 minutes per session.

How Does Red Light Therapy Help Keep Your Skin Healthy?

Our skin relies on millions of cells to be able to perform its functions. When our cells experience homeostasis or a state of balance, our skin and body perform (and look) better. And as mentioned above, red and NIR light enhances cellular function while also preventing inflammation and oxidative stress. Red light therapy helps make your skin look and feel softer, smoother, and healthier.

Besides, red light therapy also helps damaged tissues heal and regenerate faster. It also has anti-inflammatory benefits, potentially increasing blood flow to damaged and inflamed tissues and reducing oxidative stress.

Final Thoughts

Skincare is self-care, as keeping your skin healthy also produces multiple benefits to your health. Thankfully, aside from proper hygiene, regular exercise, a balanced diet, and an established skincare routine, red light therapy can also improve your overall skin health.

For more information about red light therapy or to view our catalog of red therapy devices, click here.

Sources:

https://www.hse.gov.uk/skin/professional/causes/structure.htm

The Light for your Wounds

I remember how I used to come home with a bruise or cut every day after playing basketball in my childhood. Cuts and bruises were a part of the game, but my mother never took them lightly.

They may not seem like a tiny problem, but sometimes even a small wound can affect critical ways. It can lead to an infection as the cut exposes your body to external bacteria. This is why it important not to neglect the wounds.

What Happens When we Get a Cut?

Do you know what exactly happens when we get a cut?

In a small cut, the skin gets punctured, and the regular blood vessels get damaged. The effect is on the dermis layer. Whereas in the case of a deep cut, the impact is majorly on the tissues and the blood vessels break down completely results bleeding.

How our Body Reacts to Wounds?

When you get a cut, the body gets help from cells like neutrophils and immune cells. The section starts clotting the blood and reduces the blood flow. Antibodies, proteins clean up the site and eat the dead skin cells and other wastes.

Once the cut is free from germs, the skin growth gets started, and your body starts to rebuild the lost tissues and fix the broken blood vessels with the new ones. This repair work is done by cells called fibroblasts. In the last stage of wound healing, a lot of remodeling done to make the vessels and tissue functional again.

(Image source: https://askabiologist.asu.edu/)

The Light on the Wounds

No wonder science and technology have covered a long way to make human life easier. Now wounds can be treated with light therapy.

Yes, light therapy!!

That sounds out of the ordinary. But light therapy can heal your wounds by 200%!!

Wounds that Can be Treated by Light Therapy

Since wounds are of different types, wounds can be open or closed wounds. According to reports, LED light therapy can treat non-healing wounds, i.e., that doesn’t heal after 4 weeks. People with the following types of wounds can be healed from LED light therapy:

• Diabetic ulcers

• Venous ulcers

• Pressure ulcers

• Non-healing surgical wounds

• Serious burns

• Oral sores from chemotherapy/radiation

• Metabolic-disease-related wounds

• Wounds that repeatedly break down

How Red and Near-Infrared light Works for Wound

Light therapy a broad range of light having different wavelengths. Red light (620 nm — 680 nm) is visible red light, whereas Near-Infrared light (700nm — 1100nm) is invisible. Many studies reported that biologists have found that treating the cells with near-infrared light can grow 150% to 200% faster than cells not stimulated by light.

Biologically the Near-Infrared light boosts microcirculation and formation of new capillaries at the wound section.

Infrared light rays increase cellular energy that speeds up any healing process and penetrates deeper into the skin. As a result, the wound section receives more oxygen and nutrients to naturally help with the wound's healing process.

The light nurtures the lymph system activity. This assists with the detoxification process of the wound without overtaxing the lymph system and prevents lymphedema. The near-infrared rays also clean up the dead or damaged cells, making a clear blood circulation path.

Another benefit of Infrared therapy is that it helps release ATP (raw cellular energy), which gives energy to the damaged cells in the wound to heal better and faster (study).

Not only this, the studies have shown that the wound size also decreased by up to 36%.

Source: www.slideshare.net/amintalebi1/light-and-wound-healing

So, next time you encounter a wound, put a light on it!!

Let your cut heal through LIGHT THERAPY!

References:

http://www.jofamericanscience.org/journals/am-sci/am0706/36_5769am0706_203_208.pdf

https://www.infrared-light-therapy.com/red-light-therapy-wound-healing/

https://pubmed.ncbi.nlm.nih.gov/25363448/

https://pubmed.ncbi.nlm.nih.gov/25654197/

https://iopscience.iop.org/article/10.1088/1054-660X/24/8/083001

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126803/

https://pubmed.ncbi.nlm.nih.gov/24155549/

How to Prevent Jet Lag with Light Therapy

How to Prevent Jetlag with Light Therapy Treatment

Globetrotters know flying across time zones can be all fun and games until headaches start to kick in, sleep cycles get disturbed, and frequent moments of inappetence prevents them from enjoying even the most sumptuous local cuisine. If you’ve had any of these unfortunate events disturb your travel plans and work productivity, you’ve most likely experienced a jet lag.

What is Jet Lag?

Jet lag, also known as jet lag disorder is our body’s reaction to abrupt changes in new environments that are two or more time zones ahead/delayed. This can affect even the most seasoned flyers like pilots and business travelers.

What causes Jet lag disorder?

Your body has a clock system called circadian rhythm that schedules your body for its sleep and wake up time. Your circadian clock is synced depending on your original time zone.

Jet lag is caused by a temporary discoordination with your circadian clock and your new time zone or sleep-wake schedule. This is why when you expose your body to abrupt schedule changes, its normal functions related to sleep, coordination, and gastrointestinal processes are disrupted. While your mind may be ready to fly west, your body may still be stuck home and is still hours ahead.

Treating Jet Lag with Light Therapy

Jet lag can take days, weeks, or longer to improve, which may affect daily activities. In addition, although jet lag may be a temporary disorder, frequent exposure also poses significant long-term risks such as disturbances in menstrual cycle, cognitive defects, and temporal lobe atrophy.

One popular and effective treatment for jet lag disorder is Light therapy. Light therapy has been considered as a popular and effective treatment for jet lag disorder and has been backed by research since 1980.

Your body clock is largely influenced, among other factors by light, which is indicative of the rising and setting of the sun. This means that adjusting to a new time zone also means adjusting to a new daylight-night time and awake-sleep schedule.

Essentially, light therapy assists your brain and body in adjusting to a new time zone by conditioning yourself to light at an appropriate time. This allows your normal body functions to be in sync with your new schedule. By regulating light exposure, you can adjust faster with new conditions.

Studies show that exposure to light therapy helps people adjust their circadian clocks to new time zones more efficiently and effectively. Treatment of jet lag by Light therapy involves an exposure to natural or artificial light such as red light therapy.


How does Red light therapy work?

Red light therapy is a non-invasive, quick and easy treatment for jet lag that brings concentrated natural light to your body cells in order to condition it for a new day-light schedule. Red light therapy emits natural light that can boost cell energy without the putting your body at risk of the damaging UV rays from the sun.

If you travel westwards, you can use Red Light in the evening to help you adjust to a later time. On the other hand, if you travel eastwards, you can expose yourself to red light in the morning in order to acclimate your body to an earlier time zone.

Kaiyan produces high-quality Red light therapy home devices that utilize medical-grade LED (Light-emitting Diode) in order to produce a natural red light that is ideal for adjusting to new time schedules.

The great thing about this device is that, if you often work away from sunlight, this indoor light therapy device can be a convenient way to adopt your circadian clock to a new time zone. Check out our top picks for the best FDA-cleared light therapy masks.

Experiencing jet lag may be the ultimate bummer for travelling, but sufficient knowledge and proper treatment can keep you away from ruining your travel plans and goals.

References:

https://www.scientificamerican.com/article/how-to-prevent-jet-lag/
https://www.mayoclinic.org/diseases-conditions/jet-lag/diagnosis-treatment/drc-20374031
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829880/