Chiropractors Turn to Light Therapy for Car Accident Rehabilitation

When we sit in our cars, though we understand the risk involved, driving is seen as a nonchalant activity. While driving, you can see people talking on their phones, texting, putting make-up on, or eating. No one wants to be involved in a car accident, yet people can be pretty careless. We don't have to convince you; the numbers say it all. 

It is estimated that 3 million people in the U.S. are injured every year in car accidents. The average number of accidents within the U.S. every year is 6 million. Around 27% of injuries are non-fatal. Though it's the better option, it imposes the question of - what happens after the accident? You're never ready for a car crash, and you’re certainly never prepared for what comes next. 

Post-crash, it is important to heal and recover the injury you may have experienced. Injuries that occur from car accidents are endless— broken arms, legs, torn ligaments, whiplash, concussion, you name it. Some are lucky enough to only have received minor injuries, but many accidents leave people with more complicated and long-term consequences. Either way, your body has gone through trauma after a car crash.

While the effects of a car crash can be physical, the trauma can also be mental. During a car accident, your body experiences an adrenaline rush that can mask pain and other symptoms, causing you to believe you aren't injured. Even if you don't have visible injuries directly following an accident, injuries can take days to show as your body returns to its regular state. 

Most post-car accident patients go to chiropractors and rehabilitation centers to receive treatment such as massage, adjustments, and light therapy. We’re going to focus on the latter, as light therapy is a non-invasive treatment to improve injuries and overall health.

During treatment, light therapy is directed at specific areas of the body, and the  light penetrates through the skin, ultimately activating ATP production. This, in turn, helps turnover dead cells and rejuvenate new cells at a faster pace. 

Low level laser therapy (LLLT) has been studied as a treatment for chronic wounds, and higher-power lasers have been successfully used to close acute wounds as an alternative to stitching. The type of light therapy that you could use varies, as there are many light colors working and functioning in their own right. 

Let’s take a look at one Californian chiropractor who uses light therapy to treat his patients. Dr. Marks has been studying light therapy, and works with all areas of the body, including bones, discs, joints, ligaments, muscles and nerves. After an examination, Dr. Marks creates a tailored light therapy treatment plan, focusing on combating spasms, relieving injury pain, and restoring a full range of motion to the injured area – all through light therapy. It’s common for people to grapple with spinal pain and dislocations after a car accident, and light therapy is an ideal complement to chiropractic adjustment techniques. 

More and more people are growing their chiropractic practice by adding LED light therapy as a service, particularly since LED light therapy has proven to be highly beneficial for musculoskeletal issues. As one study said, “For over forty years, low level laser (light) therapy (LLLT) and LED (light emitting diode) therapy (also known as photobiomodulation) has been shown to reduce inflammation and edema, induce analgesia, and promote healing in a range of musculoskeletal pathologies.“ LED light therapy has been showing that it initiates a positive ripple effect at the cellular level, creating cellular enhancements that could potentially amplify the benefits of chiropractic adjustments.

Light therapy helps restore your body to its default settings, bringing the body back to equilibrium. It also greatly impacts the circadian rhythm, helping it run smoothly, rest better, and recover more quickly – even after major events like a car accident. Light exposure directly affects your sleep cycle, which is a part of your circadian rhythm, helping your body heal and regenerate through deep sleep. 

As mentioned, all of this is possible due to light therapy stimulating ATP production and creating a better regeneration of cells. This gives space for a whole new set of cells that you would eventually develop no matter the light therapy; however, with the boost, they're produced faster and in an improved state. This is exactly when the body needs after a car accident.

Not to mention, light therapy consumer reports show that more people have been satisfied with their results and have experienced general improvement in wellness and overall health—this speaks volumes with respect to light therapy’s effectiveness. Kaiyan produces MDA-certified and FDA-approved light therapy devices made for use of LED light therapy at home and in-clinic. With the help of light therapy, you can receive the same treatment you’d get from a chiropractor, right at home. It’s the ideal supplement for alternative health practitioners to use in their practice, and even something they can send their patients home with for more accessible healing. 


Find it interesting? Share it!

Chiropractors Turn to Light Therapy for Car Accident Rehabilitation

Chiropractors Turn to Light Therapy for Car Accident Rehabilitation

When we sit in our cars, though we understand the risk involved, driving is seen as a nonchalant activity. While driving, you can see people talking on their phones, texting, putting make-up on, or eating. No one wants to be involved in a car accident, yet people can be pretty careless. We don't have to convince you; the numbers say it all. 

It is estimated that 3 million people in the U.S. are injured every year in car accidents. The average number of accidents within the U.S. every year is 6 million. Around 27% of injuries are non-fatal. Though it's the better option, it imposes the question of - what happens after the accident? You're never ready for a car crash, and you’re certainly never prepared for what comes next. 

Post-crash, it is important to heal and recover the injury you may have experienced. Injuries that occur from car accidents are endless— broken arms, legs, torn ligaments, whiplash, concussion, you name it. Some are lucky enough to only have received minor injuries, but many accidents leave people with more complicated and long-term consequences. Either way, your body has gone through trauma after a car crash.

While the effects of a car crash can be physical, the trauma can also be mental. During a car accident, your body experiences an adrenaline rush that can mask pain and other symptoms, causing you to believe you aren't injured. Even if you don't have visible injuries directly following an accident, injuries can take days to show as your body returns to its regular state. 

Most post-car accident patients go to chiropractors and rehabilitation centers to receive treatment such as massage, adjustments, and light therapy. We’re going to focus on the latter, as light therapy is a non-invasive treatment to improve injuries and overall health.

During treatment, light therapy is directed at specific areas of the body, and the  light penetrates through the skin, ultimately activating ATP production. This, in turn, helps turnover dead cells and rejuvenate new cells at a faster pace. 

Low level laser therapy (LLLT) has been studied as a treatment for chronic wounds, and higher-power lasers have been successfully used to close acute wounds as an alternative to stitching. The type of light therapy that you could use varies, as there are many light colors working and functioning in their own right. 

Let’s take a look at one Californian chiropractor who uses light therapy to treat his patients. Dr. Marks has been studying light therapy, and works with all areas of the body, including bones, discs, joints, ligaments, muscles and nerves. After an examination, Dr. Marks creates a tailored light therapy treatment plan, focusing on combating spasms, relieving injury pain, and restoring a full range of motion to the injured area – all through light therapy. It’s common for people to grapple with spinal pain and dislocations after a car accident, and light therapy is an ideal complement to chiropractic adjustment techniques. 

More and more people are growing their chiropractic practice by adding LED light therapy as a service, particularly since LED light therapy has proven to be highly beneficial for musculoskeletal issues. As one study said, “For over forty years, low level laser (light) therapy (LLLT) and LED (light emitting diode) therapy (also known as photobiomodulation) has been shown to reduce inflammation and edema, induce analgesia, and promote healing in a range of musculoskeletal pathologies.“ LED light therapy has been showing that it initiates a positive ripple effect at the cellular level, creating cellular enhancements that could potentially amplify the benefits of chiropractic adjustments.

Light therapy helps restore your body to its default settings, bringing the body back to equilibrium. It also greatly impacts the circadian rhythm, helping it run smoothly, rest better, and recover more quickly – even after major events like a car accident. Light exposure directly affects your sleep cycle, which is a part of your circadian rhythm, helping your body heal and regenerate through deep sleep. 

As mentioned, all of this is possible due to light therapy stimulating ATP production and creating a better regeneration of cells. This gives space for a whole new set of cells that you would eventually develop no matter the light therapy; however, with the boost, they're produced faster and in an improved state. This is exactly when the body needs after a car accident.

Not to mention, light therapy consumer reports show that more people have been satisfied with their results and have experienced general improvement in wellness and overall health—this speaks volumes with respect to light therapy’s effectiveness. Kaiyan produces MDA-certified and FDA-approved light therapy devices made for use of LED light therapy at home and in-clinic. With the help of light therapy, you can receive the same treatment you’d get from a chiropractor, right at home. It’s the ideal supplement for alternative health practitioners to use in their practice, and even something they can send their patients home with for more accessible healing. 


Light Therapy & The Lymphatic System

Light Therapy & The Lymphatic System


While you may have heard of the lymphatic system, it’s something that few people truly understand; however, it’s an important part of the human body that is essential to our health.

The lymphatic system is part of the circulatory and immune systems, and  comprises a network of lymphatic vessels that carry a clear liquid called lymph to the heart. 

Why is it important you may ask? Well, for many reasons. 

The lymphoid tissue associated with the lymphatic system performs immune functions for the body's defense against infections and the spread of tumors. It consists of connective tissue through which the lymph passes, formed by reticular fibers, containing various leukocytes, mainly lymphocytes.

Among the jobs the lymphatic system has, it includes: 

  • Protecting your body from illness-causing invaders
  • Maintaining body fluid levels
  • Absorbing digestive tract fats
  • Removing cellular waste

As you can see, the role the lymphatic system plays is very important. However, blockages, diseases, or infections can affect your lymphatic system's function, all of which creates lymphatic dysfunction in the body.

A common issue that arises from lymphatic dysfunction is lymphedema. Lymphedema causes swelling in your arms or legs. Your fingers or toes can retain fluid and swell, and even the tissues of the head and neck can become affected, too. Lymphedema can then lead to skin changes, skin discoloration, blisters, fluid leakages from the skin, and infection.

Another problem that occurs when our lymphatic system isn't doing its job is infection. Infection may cause swollen lymph nodes because the lymph nodes are inflamed. In certain situations, the lymph nodes, themselves, can become infected (which is called lymphadenitis) by organisms that spread through the lymphatic system from the original infection site. Our body is left without its protection, making it susceptible to disease.

When the lymphatic system doesn't work optimally, it has a more difficult time in receiving the fluids carried by the venous system, which then accumulates in the space between the lower skin wall and the upper part of the muscles, causing a pressure higher than what should be with normal conditions.

Due to this excessive pressure, there’s the risk of weakening the fibers that allow the skin and muscles not to overly expand. If this happens, edema will form with consequent swelling. 

The swelling initially grows slowly and generally causes no pain. It can affect only one limb or multiple limbs. The symptoms of lymphedema include the change in the color of the skin on the area affected by the edema and the constant sensation of heaviness of the limb, as well as itching. 

None of this sounds like a walk in the park. However, light therapy can help improve sympathetic drainage to prevent swelling. 

What is light therapy, and how does it work, again? Light therapy is a non-invasive, non-pharmaceutical treatment that focuses on improving the body’s overall health. Depending on the color of light, whether it’s from a lamp, box, or mask, each color has specific health benefits. Red light therapy is usually anti-inflammatory, blue helps with bacteria that cause acne, and the benefits of white light therapy include enhanced mood and help offsetting sleep disorders. However, all work to rejuvenate the body on a cellular level. 

With light therapy, your cells become regenerated with each session. The reproduction of cells is accelerated, creating an entirely new set of cells that carries on to reproduce younger and stronger ones. ATP, which fuels our body, is released – giving us a healthier, more efficient organism. 

Five trials were reviewed on light therapy’s benefit on lymph, which ultimately concluded that there was moderate to strong evidence for light therapy treatments' effectiveness in the management of lymphatic issues. In 2012, four trials found that LED light therapy showed favorable results in reducing limb volume in those managing lymphedema. 

Overall, light therapy can help the lymphatic system by improving drainage, restoring normal lymphatic activity, and reducing swelling. Light therapy increased lymphangiogenesis and decreased inflammation in animal studies, as well. 

Typically, the only way to improve the lymphatic system is by keeping hydrated, eating clean, and lymphatic massage; but, light therapy now provides additional lymphatic support via non-invasive at-home treatments. 

At Kaiyan, we’re proud to produce MDA-certified and FDA-approved light therapy devices that help people live healthier, more balanced lives. This means you or your patients have the liberty of treating your body with a non-pharmaceutical and non-invasive treatment that's side-effect free. It’s simple and safe to use and Kaiyan products are perfect to use as at-home or in-clinic treatments to improve well-being and quality of life for everyone.

All About Fascia and Light Therapy

All About Fascia and Light Therapy

Fascia is a layer of fibrous tissue – or the connective tissue structure that covers muscles, muscle groups, blood vessels, and nerves, joining some structures while allowing others to slide over each other gently. It’s essentially a band or sheet of connective tissue, mainly collagen, under the skin that attaches, stabilizes, encloses, and separates muscles and other internal organs. We classify it by layer as superficial fascia, deep fascia, visceral or parietal fascia.

And its function is significant in the human body. Fascia is what distributes water equally into our carefully structured skin system. It's mainly made up of collagen and ground substance. So how can fascia be harmful?

In itself, fascia isn’t something bad – in fact, is essential to a healthy body; but if it isn't functioning optimally, things can take an ugly turn. The dysfunction of our fascial system can cause great discomfort and pain. Fascia is ideally supposed to move around as we do, and yet there are many things that cause problems with this tissue. 

When fascia is in a shortened position for prolonged periods due to such a lifestyle and overall poor posture, it will adapt – shortening and tightening. Fascial restrictions can also occur from trauma, infection, inflammation, or surgery. These changes affect our fascia's regular movement, creating tension points in our body, pain, applying pressure to surrounding tissues. Therefore, it causes restriction of movement due to the pain and tightening that occurs. So – how can light therapy help?


Light Therapy for Fascia Treatment

Light therapy consists of exposure to a filtered light with an intensity of up to 10,000 lux emitted by a particular lamp. Through light, it can help with a number of problems and specifically offers great benefits to the skin. 

Light therapy treatment for fascia can be done any time of the day; however, it is best done in the early hours of the morning, with a duration of up to 30 minutes, and must be repeated for long-term effect. 

Next to doing stretches and trying other forms of relaxation methods to release tension, fascia can be treated with light therapy. The skin reacts biochemically to light therapy, directly improving cell functions. ATP, our energy source, increases in production with light therapy treatment, resulting in improved cell rejuvenation. Light therapy benefits are that they reduce the discomfort of pain and inflammation by increasing blood flow and tissue repair mechanisms in the body.

Apart from a healthy functioning body, keeping your fascia rejuvenated also helps with appearance. Body symmetry and alignment improve, the blood flow increases, which gives faster exercise recovery, stretch marks and cellulite get reduced, scar tissue breaks down easier, and overall less pain and better performance in the day-to-day tasks. 

Repairing connective tissue such as fascia helps with muscle recovery, which is why light therapy is also used in sports. In the release of ATP, our muscles gain their power back. With light therapy, the recovery is sped up; sessions improve the time it usually takes for our cells to do it themselves. 

Plantar fasciitis is often created from strain at the ligament of the sole of the foot. It's a pain in our heels, and with light therapy, tissue repair is accelerated. Light therapy is an overall regenerating way of treating any issue related to connective tissues. 

Light therapy can also help with cellulite. In itself, cellulite isn't a health issue, but since light therapy helps collagen production, in the same way it helps fascia, it can also be effective with cellulite. With higher collagen levels, skin appears smoother and tightens, which can reduce the appearance of cellulite. 

Light therapy, while treating fascia, can also treat other issues. There are different ways to use light therapy and different settings for different outcomes. Infrared light is used for tissue repair, pain reduction, and similar problems. Red light resolves problems such as inflammation, tissue repair at the surface level, general pain relief as well. Blue light is ideal for combating bacterial issues that lead to our skin becoming acne-prone even when we're past that stage. 

That said, you want to make sure you are using the right red light device. At Kaiyan Medical, we have MDA-certified and FDA-approved laser light therapy devices that will make sure you’re receiving medical-grade light therapy treatment for your fascia and other issues. 

Infographic: What is Red Light Therapy?

Infographic: What is Red Light Therapy?

Light Therapy - Stimulating Healing and Improving Bone Health

Light Therapy - Stimulating Healing and Improving Bone Health

The body is naturally designed and made to be able to build newer bones when the need arises. Studies on animals and humans have shown that red and infrared light therapy greatly aids in healing breaks, fractures, and bone defects. In 2013, researchers in Sao Paulo, Brazil, studied the effects of red and near-infrared light on rat bones' bones' healing process. Upon a piece of bone being sliced from the upper leg in an “osteotomy” of 45 rats, the rats were split into three groups — Group 1 Received no light, the second group were administered red light (about 660–690 nm), and the third group was placed on exposure to near-infrared light (about 790- 830nm)

The study found “a significant increase in the degree of gray level (mineralization) in groups treated with the laser after 7 days” and “after 14 days, only the group treated with the laser therapy (red light and near-infrared light) in the infrared spectrum showed higher bone density.

Red light and near-infrared light have been shown to stimulate energy production in the bone cells, improve blood vessel formation, circulation, and blood flow to the affected area, regulate and decrease inflammation, increase bone growth factors, enhance the production of collagen and procollagen, which stimulates the growth of bone cells.

Because ATP production is interrupted in broken bones, and cells begin to die due to a lack of energy, the right kind of red light and near-infrared light therapy has shown increased bone formation and collagen deposition. It’s no wonder red light, and NIR is gaining so much momentum in sports teams among athletes. Many pro teams now use light therapy to speed recovery and get their players back in action after an injury, more every year. Red and near-infrared light wavelengths can penetrate deep into tissue and bone for all kinds of healing effects. Concentrated natural light stimulates the mitochondria in the cells, reducing oxidative stress and helping the body to produce more usable energy to power itself, regenerate, and heal.

Bone Density Benefits
  • Increases bone mineral density and bone structure: Preliminary research shows benefits for improving osteoporosis, including a boost in osteogenesis, increased stress load, and preserved vertebrae strength
  • Strengthens bones: Increases osteoblast proliferation, collagen deposition, and 3 bone neoformation when compared to bones not treated with red light, and increases maximum bone tolerance
  • Improves bone healing: Accelerates bone healing in extraction sites, bone fracture defects and distraction osteogenesis 5
  • Reduces swelling from bone injuries: A proven anti-inflammatory treatment indicated by the FDA that has been shown to curb swelling in facial bone fractures
  • Enhances overall bone health: Increases natural collagen production, which is essential to healthy bones and skin7
References
  1. Lasers Surg Med. 2010 Aug;42(6):519-26 - PubMed
  2. J Biol Chem. 2002 Apr 19;277(16):14221-6 - PubMed
  3. Lasers Surg Med. 2006 Jan;38(1):74-83 - PubMed
  4. Bone. 1988;9(2):73-9 - PubMed
  5. Nature. 2003 May 15;423(6937):337-42 - PubMed

Lighting the Way Back for Astronauts - Light Therapy & NASA

Lighting the Way Back for Astronauts - Light Therapy & NASA

In 1993, Quantum Devices, Inc. (QDI), of Barneveld, Wisconsin, began developing the HEALS (High Emissivity Aluminiferous Light-emitting Substrate) technology high-intensity, solid-state LED lighting systems for NASA Space Shuttle plant growth experiments. The company evolved out of cooperative efforts with the Wisconsin Center for Space Automation and Robotics (WCSAR) at the University of Wisconsin-Madison — a NASA center for the Commercial Development of Space. Ronald W. Ignatius, QDI’s president, and chairman represented one of WCSAR’s industrial partners at the time. WCSAR was conducting research on light sources for promoting food growth within closed environments where humans would be present for a long duration, such as the Space Shuttle and the International Space Station.

With the support of WCSAR, Ignatius experimented with LEDs, which provide high-energy efficiency and virtually no heat, despite releasing waves of light 10 times brighter than the Sun. Ignatius admits that some scientists involved in the project were skeptical at first, thinking that the idea of using LEDs to promote plant growth was far-fetched. However, the experiments demonstrated that red LED wavelengths could boost the energy metabolism of cells to advance plant growth and photosynthesis. This finding prompted Ignatius to develop a line of LED products that emit the exact wavelength of light that plants use in photosynthesis.

“Our company gives credit to Dr. Ray Bula, the director of WCSAR, for having the foresight to go against the prevailing dogma of the time and design the first plant experiment using monochromatic light to grow lettuce plants,” Ignatius proclaims.

In 1989, Ignatius formed QDI to bring the salt grain-sized LEDs to market. In October 1995, the light sources made their Space Shuttle flight debut on the second U.S. Microgravity Laboratory Spacelab mission (STS-73, Columbia).

Growing

When NASA determined that red LEDs could grow plants in space, Marshall Space Flight Center awarded QDI several Small Business Innovation Research (SBIR) contracts to investigate the broad-spectrum diodes' effectiveness in medical applications. The contracts, issued from 1995 to 1998, focused on increasing energy inside human cells. NASA hoped that the LEDs would yield medical benefits on Earth and stem bone and muscle mass loss in astronauts, which occurs during long periods of weightlessness. (In space, the lack of gravity keeps human cells from growing naturally.) Furthermore, since wounds are slow to heal in a microgravity environment, LED therapy could accelerate healing and keep what would be termed as minor wounds on Earth from becoming mission-catastrophic in space.

In addition to promoting cell growth, the red LEDs are capable of activating light-sensitive, tumor-treating drugs that, when injected intravenously, could destroy cancer cells while leaving surrounding tissue virtually untouched. The technique, approved by the U.S. Food and Drug Administration (FDA) for use in laboratory and human trials, is known as Photodynamic Therapy.

With the SBIR assistance from NASA, QDI set out to alter a surgical probe that could emit long waves of red light to stimulate a Benzoporphyrin-derivative drug called Photofrin, which delivers fewer post-operative side effects than comparable drugs. Ignatius also developed a friendly and successful working relationship with Dr. Harry Whelan, pediatric neurology and director of hyperbaric medicine at the Medical College of Wisconsin in Milwaukee. The two had met after Ignatius came across a newspaper article highlighting Whelan’s ground-breaking brain cancer surgery technique, which uses drugs stimulated by laser lights to accelerate healing. Accordingly, QDI provided more than $1.25 million from its SBIR contracts to support Whelan’s pioneering photobiomodulation research and bring him on board to help improve the surgical probe.

Collectively, Ignatius, Whelan, and researchers from NASA successfully altered the probe for pediatric brain tumors and the prevention of oral mucositis (a common side effect of chemotherapy and radiation treatments) in pediatric bone marrow transplant patients at the Medical College of Wisconsin. In May 1998, a 20-year-old female became the first patient to undergo surgery with the modified probe. The young woman had endured six brain surgeries and chemotherapy and radiation treatments over a span of 10 years, but her aggressive cancer kept coming back. Having exhausted all of her conventional treatment options, she turned to the NASA-sponsored Photodynamic Therapy technology.

During the procedure, surgeons excised as much of the recurring brain tumor as they could then injected the light-activated Photofrin into her bloodstream and inserted the LED probe into the remaining tumor tissue. The probe, which casts long wavelengths that generate less heat and penetrate deeper into tissue than the shorter wavelengths of traditional medical lasers, proved to be both safe and effective, as the tumor never returned, and the patient recovered with no complications. A second operation that took place 3 months later on a male patient was also deemed successful by Whelan and his Medical College of Wisconsin surgeons' team.

FDA-approved clinical trials continued at several other facilities over the next 3 years, including the Roswell Park Cancer Institute in Buffalo, New York; Rush-Presbyterian-St. Luke’s Medical Center in Chicago; and the Instituto de Oncologia Pediatrica in Sao Paulo, Brazil. QDI became recognized as a U.S. Space Foundation “Space Technology Hall of Fame” award recipient in 2000 and a Marshall Space Flight Center “Hallmark of Success” in 2004.

Product Outcome

The positive clinical trial results and continued support from NASA and follow-on research grants from the Defense Advanced Research Projects Agency helped QDI and the Medical College of Wisconsin fully transition space technology into a new, non-invasive medical device. The WARP 10 (Warfighter Accelerated Recovery by Photobiomodulation) is a high-intensity, hand-held, portable LED unit intended for the temporary relief of minor muscle and joint pain, arthritis, stiffness, and muscle spasms. It also promotes the relaxation of muscle tissue and increases local blood circulation. Unlike the surgical probe, the WARP 10 does not require intravenous medicine; instead, the unit can be placed directly on the skin where treatment is to occur.

The WARP 10 was designed to aid armed forces personnel on the front lines with immediate first aid care for minor injuries and pain, thereby improving combat endurance. The “soldier self-care” device produces 80 times more photon energy than a 250-Watt heat lamp, yet it remains cool to the touch. The power advantage reduces the time required for each therapeutic dose and provides for faster multi-dose exposures when needed, without the harmful effects of ultraviolet solar radiation. The U.S. Department of Defense and the U.S. Navy are currently issuing WARP 10 to crews on submarines and Special Forces operations.

QDI has introduced an FDA-approved consumer version sharing the same power and properties of the military model as an alternative to the cost and complications associated with the overuse of non-steroidal anti-inflammatory drugs (NSAIDs) for persistent pain relief. According to a Mayo Clinic study, adverse events associated with the use of NSAIDs are reported more frequently to the FDA than such events associated with any other group of drugs. Furthermore, conservative calculations for the United States estimate that approximately 107,000 patients are hospitalized each year for NSAID-related gastrointestinal complications. At least 16,500 NSAID-related deaths occur annually among arthritis patients alone, according to compiled research.

References

Beauvoit B., Evans S.M., Jenkins T.W., Miller E.E., Chance B., “Contribution of the Mitochondrial Compartment to the OpticalProperties of the Rat Liver: A Theoretical and Practical Approach,” Analytical Biochemistry 226, 167-174 (1995).Beauvoit B., Kitai T., Chance B., “Correlation between the Light Scattering and the Mitochondrial Content of Normal Tissues andTransplantable Rodent Tumors,” Biophysical Journal 67, 2501-25 10 (1994).Chance B., Nioka S., Kent J., McCully K., Fountain M., Greenfield R., Holtom G., “Time-Resolved Spectroscopy of Hemoglobin andMyoglobin in Resting and Ischemic Muscle,” Analytical Biochemistry 174, 698-707 (1988)Conlan M.J., Rapley J.W., Cobb C.M., “Biostimulation of wound healing by low-energy laser irradiation,” J.Clin. Periodont. 23, 492-496 (1996).Eggert H.R., Blazek V., “Optical Properties of Normal Human Brain Tissues In The Spectral Range of 400 to 2500 nm,” Advances inExperimental Medicine & Biology 333, 47-55 (1993).Karu T., “Photochemical Effects Upon the Cornea, Skin and Other Tissues (Photobiology Of Low-Power Laser Effects,” HlthPhysics 56, 69 1-704 (1989).Lubart R., Friedman H., Sinyakov M., Cohen N., Breitbart H., “Changes in Calcium Transport in Mammalian Sperm Mitochondriaand Plasma Membranes Caused by 780 nm Irradiation,” Lasers in Surg & Med 21, 493-499 (1997).Lubart R., Wollman Y., Friedman H., Rochkind S. Laulicht L., “Effects of visible and near-infrared lasers on cell cultures,” Journalof Photochemistry & Photobiology 12(3), 305-3 10 (1992).Salansky N., “Low energy photon therapy for wound healing.” Intnl Med Instr, Canadian Defense Ministry, PersonalCommunication. (1998).Schmidt M.H., Bajic D.M., Reichert K.W. II, Martin T.S., Meyer G.A., Whelan H.T., “Light –emitting diodes as a light source forintra-operative photodynamic therapy.” Neurosurg 38(3), 552-556 (1996).Schmidt M.H., Reichert K.W. II, Ozker K., Meyer G.A., Donohoe D.L., Bajic D.M., Whelan N. T., Whelan H. T., “PreclinicalEvaluation of Benzoporphyrin Derivative Combined with a Light-Emitting Diode Array for Photodynamic Therapy ofBrain Tumors.” Pediatr Neurosurg 30, 225-231 (1999).Whelan H.T., Schmidt M.H., Segura A.D., McAuliffe T.L., Bajic D.M., Murray K.J., Moulder J.E., Strother D.R., Thomas J.P., MeyerG.A., “The role of photodynamic therapy in posterior fossa brain tumors: A pre-clinical study in a canine glioma model.”Journal of Neurosurgery 79(4), 562-8 (1993).5Whelan H.T., Houle J.M., Donohoe D.L., Bajic D.M., Schmidt M.H., Reichert K.W., Weyenberg G.T., Larson D.L., Meyer G.A.,Caviness J.A., “Medical Applications of Space Light-Emitting Diode Technology—Space Station and Beyond.” SpaceTech. & App Int’l Forum 458, 3-15 (1999).Yu W., Naim J.O., Lanzafame R.J., “The Effect Of Laser Irradiation On The Release Of bFGF From 3T3 Fibroblasts.”Photochemistry & Photobiology 59, 167-70 (1994).

Red Light Therapy and Quarantine

Red Light Therapy and Quarantine

If there’s one thing most of us likely haven’t had enough of in 2020, it’s natural light. The pandemic has changed our lives in so many ways, particularly concerning the drastic increase in the amount of time spent indoors and home. Most of us are stationed at our computers all day, only to log off just in time for dinner. At that point, it’s already dark, and we’re likely ready to decompress and relax.

Throw a lockdown on top of this, and we’re lucky if we even get to see the sky that day.

Our current lifestyle, specifically in quarantine, makes natural daylight a rare sight, and this can be extremely detrimental to our mental and physical health — but why?

Without a sufficient amount of light, your circadian rhythm becomes out of sync, as does our hormone production levels. And if you’ve been experiencing poor sleep, lack of light is likely the reason why. A study from the Journal of Clinical Sleep Medicine found that employees who work near windows receive twice as much sunlight as those who don’t receive natural light — they also receive 46 more minutes of sleep on average.

So: darkness isn’t the determiner of sleep; rather, light is.

It’s clear how our daily routines have become more indoors-bound, yet there seems to be no way to reduce these light-limiting circumstances. The lack of sleep disrupted hormones, and constant uncertainty has a severe effect on our bodies, which we’re all experiencing during this time. So, how do we overcome these health concerns with limited options?

This is where red light therapy plays a crucial role in improving health. With the average American spending 90 percent of their time indoors, red light therapy allows you to receive light in your own environment. But just because we’re staying at home due to quarantine doesn’t mean we can’t supplement the natural light we need.

Red light therapy works by increasing energy production at a cellular level. The more energy our cells produce, the better our bodies feel as there’s sufficient blood flow. However, there’s more to it than just feeling good.

For people working in front of the computer all day, carpal tunnel syndrome, muscle fatigue, and arthritis are serious concerns. And since we’re working from home, our screen time has significantly increased. Red light therapy can also alleviate these issues by increasing circulation, repairing tissue, and relieving stiffness.

And while some may have received more natural light during quarantine in the summer, winter is right around the corner. During the winter months, Seasonal Affective Disorder (SAD) affects around 5% of people in general. However, with quarantine, these numbers are increasing. Thankfully, SAD symptoms can be significantly reduced, as light therapy mimics the sun’s light.

With COVID-19, it’s also incredibly difficult to manage mental and emotional health with the current circumstances. Before quarantine, if someone was stressed, they could reduce their symptoms by working out, going to yoga class, or enjoying nature with friends. But these activities have been either eliminated or significantly reduced. So, the reality is that we’re sitting at home all day, stressed, overworked, and fatigued.

Red light therapy is a game-changer for mitigating stress levels, as light cultivates calmness within the body. And since light therapy aids with cell production, it helps the body bounce back after experiencing stress or illness. In these times, red light therapy can aid with stress and help people recover from COVID-19 by reducing lung inflammation, pneumonia, and other acute respiratory disorders.

So although the quarantine presents many new challenges, we can be empowered to control our own health and wellness during these times. At Lunas, we’re passionate about helping people achieve their balance and intend to have our light panels in homes around the world, particularly during this challenging period. We hope to help everyone around the world find their light — literally!



Bipolar Disorder & Light Therapy

Bipolar Disorder & Light Therapy

I have a friend who often shows extreme shifts in moods. Sometimes I see an extremely elevated mood, and sometimes, it's depression. On some days, I see episodes of uplifted feelings and depression at the same time.

Strange right!

Later I figured out that she was going through a mental illness called bipolar disorder. This isn’t a rare brain disorder. In fact, about 15 million U.S adults suffer from this disorder.

Bipolar disorder is a mental illness characterized by dramatic transfer in mood and behavior. Bipolar depression can last from several days to years, depending on the person's type and state.

Let’s put light on some of the unknown facts of Bipolar Disorder.

  • Firstly we need to understand that bipolar depression has several types. It is distinguished by profuse behaviors, moods, depression, and, yes, mixed emotions. The symptoms of this illness can present at different severities and in many combinations in different people. So, it may not be the same for every person who has Bipolar disorder.

We basically classify the states into two broad classes:

  • Manic — overly elevated emotions, increase in energy, higher self-confidence, and decreased need for sleep.
  • Depression — sad, worthless, suicidal, low feelings
  • It is possible that people can experience symptoms of mania and depression at the same time.
  • The length of mood episodes and varying behavior can vary from person to person.
  • There is no known single cause of this mental illness.
  • Not only adults but children and teenagers can have bipolar disorder too.
Light Therapy — the Bipolar Disorder Soother!

If we compare other types of depression, there are fewer treatments available for bipolar disorder.

Hence, it is important to find an effective treatment for your illness.

Antidepressant medications, on the other hand, are not clearly effective. They may aggravate the mood cycling in people with bipolar disorder. Also, many people with bipolar disorder are prescribed to take other medications like mood stabilizers.

That’s why it is important to go for a non-medication treatment, like light therapy!

But why is it recommended? Light therapy is more effective, non-invasive, and absolutely safe because it can be used without worrying about additional drug interactions.

But How Light Therapy Helps?

Humans have natural 24-hour clocks, which are disrupted in bipolar disorder. One way of treating bipolar disorder is to handle the circadian rhythm (24*7 natural cycle that regulates the physical, mental, and behavior changes). And this can be achieved with bright light therapy.

The light emitted during light therapy activates the retina in the eye, resulting in a stimulus being transmitted from the eye to the brain's hypothalamus. The hypothalamus is a part of the brain that has a vital role in regulating mood. It also helps control many bodily functions, such as the release of hormones from the pituitary gland and channelizing the mood.

The light acts through the eyes to regulate the biological clock located in a tiny brain region. There are disturbances in the biological clock that affect circadian rhythms in people with bipolar disorder, including hormonal rhythms, sleep, feelings, cognition, and other behaviors.

Light therapy triggers the hypothalamus and helps bipolar patients to calm their emotional flow and have normal behavior.

Studies have shown that light can affect the major neurotransmitters, or chemical messengers, involved in mood and behavior, e.g., serotonin and dopamine. So, light therapy may act similarly to antidepressants by directly working on these neurotransmitters.

We found trials of light therapy compared to a placebo in people with bipolar depression. The studies' results displayed a significant improvement in depressive symptoms with bright light compared to placebo conditions.

I recommended my friend to you light therapy, and that really helped her. The quality of personal life is great since then. If you are also like my friend who is dealing with bipolar disorder, you possibly got the remedy.

Remember, your Mental Health matters!!

References:

Muse - The Brain Sensing Headband

Muse - The Brain Sensing Headband

Overview

Muse is a wearable device in the form of a headband that senses the brain's electrical rhythms (EEG). The headband is coupled with a smartphone app (Calm) that monitors the user’s brain electrical activity and gives immediate feedback to achieve a “calm” or meditative pattern. Over time, the use of this device is thought to help reduce distractibility, improve stress control, and improve mood.

Use

The headband is light and comfortable but requires a bit of experience to fit properly and to transmit reliable signals by BlueTooth to the associated smartphone app. The device will not work with older versions of many smartphones (such as the iPhone 4). The instructions for use are straightforward and easy to follow, and the program is up and running within minutes. Once one gets started, it is straightforward to adjust settings and to personalize the program.

UI

The user is asked to sit quietly with eyes closed and to focus on counting expirations. The app displays one of two pleasant visual backgrounds associated with wind or water sounds. The volume and frequency of these weather sound decrease as the EEG rhythm become the “calm” state. Therefore, one gets immediate and easy to understand feedback as to how one is doing. The sessions can be set to last from 3 minutes to 45 minutes.

Appropriateness

Immediately after finishing a session, the app provides a graphical depiction of one’s EEG rhythm, grouped into “calm,” “neutral,” or “active” bands. The app calculates the amount of time spent “calm” and awards points for “calm” time. The points are associated with certain awards and expressions of positive feedback. Besides, the app graphically displays the percentage of time spent “calm” over variations and prescribes several challenges to increase time performance. All times performance of this is lovely and easy to understand and to manipulate.

Account Management

The company’s website provides a great deal of information regarding frequently asked questions and troubleshooting. When I submitted a question to the company over the website, I received an answer within hours. The app allows one to permit for session data to be aggregated by the company for research purposes. I think it is useful to share personal data because they may ultimately determine how effective the device might be.

Scientific Basis

The Muse headband is a remarkable technological advance over earlier versions of EEG neurofeedback technologies. Neurofeedback is a technique that has been employed for mental health conditions for more than a decade and formerly required a link between traditional EEG recording devices with desktop or laptop computers. Through operant conditioning, these techniques seek to alter brain functioning by giving live feedback about EEG rhythms to the patient. Patients are rewarded if they can achieve certain EEG rhythm characteristics, such as decreased theta activity (4–7 cycles per second) or an increase in alpha activity (12–15 cycles per second). A higher proportion of alpha wave activity is thought to be associated with focused attention and a feeling of calm or well-being.

Traditional neurofeedback techniques have never been fully tested in psychiatric conditions for several reasons. First, these techniques are not protected by exclusive intellectual property, so industrial funding for large-scale trials has not been available. Similarly, devices designed to deliver neurofeedback have not been seen as unique medical devices by the FDA, which could be protected by patents. Furthermore, there is some disagreement about which pattern of EEG rhythms would be most therapeutic for particular groups of patients. I was not able to locate references to clinical trials using Muse technology specifically.
Although not formally approved for clinical use by the FDA, many clinics currently offer neurofeedback treatments. However, widespread clinical adoption of neurofeedback has not occurred due to concerns about cost relative to the uncertainties about efficacy. Most protocols recommended that individuals come to a supervised clinical setting for multiple sessions per week over several months. This is a time consuming and expensive endeavor which, due to lack of published scientific data on efficacy, is not reimbursed by insurance companies. With the Muse technology, EEG neurofeedback has entered the world of self-directed activity using a wearable device coupled with a smartphone app. Therefore, the cost is much reduced, and it becomes feasible to decide individually whether the techniques are a worthwhile investment of time.

Cost

The Muse headband costs $299, and the app is free. This appears to be a very reasonable cost, given the complexity of the technology and the amount of information obtained with its use.

Reviewed April 2015

References
  • ADHD
    Neurofeedback has been studied most extensively in Attention Deficit Hyperactivity Disorder, for which at least 5 randomized controlled trials with mixed results have been published.
    Bink M, van Nieuwenhuizen C et al: Neurocognitive effects of neurofeedback in adolescents with ADHD: A randomized controlled trial. J Clin Psychiatry 75:535–542, 2014
  • Major Depression
    Peeters F, Oehlen M, et al.: Neurofeedback as a treatment for the major depressive disorder — a pilot study. PLoS One. 2014 Mar 18;9(3):e91837. DOI: 10.1371/journal.pone.0091837. eCollection 2014
  • Performance Anxiety
    Gruzelier JH, Thompson T et al: Application of alpha/theta neurofeedback and heart rate variability training to young contemporary dancers: state anxiety and creativity. Int J Psychophysiol 93:105–111, 2014
  • Obsessive-Compulsive Disorder
    Koprivova J, Congedo M et al: Prediction of treatment response and the effect of independent component neurofeedback in obsessive-compulsive disorder: a randomized, sham-controlled, double-blind study. Neuropsychology 67:210–223, 2013
  • Reading Disabilities
    Nazari MA, Mosanezhad E et al.: The effectiveness of neurofeedback training on EEG coherence and neuropsychological functions in children with reading disability. Clin EEG Neurosci, 43:315–322, 2012
  • Autism Spectrum Disorders
    Kouijzer ME, van Schie HT et al.: Is EEG-biofeedback an effective treatment in autism spectrum disorders? A randomized controlled trial. Appl Psychophsiolo Biofeedback 38:17–28, 2013
  • Traumatic Brain Injury
    Nelson DV, Esty ML: Neurotherapy of traumatic brain injury/posttraumatic stress symptoms in OEF/OIF veterans. J Neuropsychiatry Clin Neurosci 24:237–240, 2012
  • Insomnia
    Hammer BU, Colbert AP, et al.: Neurofeedback for insomnia: a pilot study of Z-score SMR and individualized protocols. Appl Psychophysiol Biofeedback 36:251–264, 2011.
  • Several other studies have proposed benefits in cognitive performance for normal subjects or in meditators.
  • Gruzelier JH: EEG-neurofeedback for optimizing performance. I: A review of cognitive and affective outcomes in health participants. Neuroscience and Biobehavioral Reviews 44:124–141, 2014
  • Ros T, Munneke MAM, Ruge D, Gruzelier JH, and Rothwell JC: Endogenous control of waking brain rhythms induces neuroplasticity in humans. European Journal of Neuroscience, 31:770–778, 2010
  • Vidyarthi J and Riecke BE: Interactively mediating experiences of mindfulness meditation. International Journal of Human-Computer Studies 72:674–688, 2014


Parkinson's: From the Gut to the Brain

Parkinson's: From the Gut to the Brain

Margaret Jarrett was diagnosed with Parkinson’s disease eight years ago. And although she was bothered by many of the symptoms that commonly afflict people living with Parkinson’s — resting tremor, uncertain gait, and terrible nightmares — the thing that bothered her the most was the loss of her sense of smell. An avid gardener, she took great pride in her roses but being unable to inhale their perfumed scent really got her down.

“You take something like your sense of smell for granted,” Jarrett, 72, said. “You don’t realize how precious something is until it’s gone.”

Parkinson’s disease combines movement disorders, including resting tremors, muscle rigidity, impaired balance, and movement slowness. It can also cause neurological problems such as depression, insomnia, memory loss, and confusion.

Its cause is unknown, but it is associated with dopamine depletion and destruction of neurons in the brain's basal ganglia region.

The current mainstay of treatment for Parkinson’s disease involves physical therapy and medications that act to increase dopamine levels in the brain. One relatively new therapy for Parkinson’s is exposure to infrared light.

Dr. Ann Liebert, co-ordinator of photomolecular research at the Australasian Research Institute, has been exploring the idea of using infrared light to modulate the gastrointestinal tract’s microbiome in humans.

The gut’s microbiome — composing trillions of bacteria, fungi, and protozoa from hundreds of different species that normally inhabit our gastrointestinal tract — has come under increasing scientific attention over the past decade, with links being established between the microbiome and several conditions including obesity, type 2 diabetes, cardiovascular disease, and depression. Several studies have also observed that the gut microbiome is markedly altered in patients with Parkinson’s disease. Fecal microbiota transplantation can have a protective effect in animal models of Parkinson’s.

The reason for this is unknown. However, an interesting observation is that another common pathology seen in Parkinson’s disease is the accumulation of misfolded proteins, called Lewy bodies, in the brain. It has been shown that certain sensory cells of the gut contain these same proteins.

Researchers have hypothesized that abnormal forms of the protein could travel from the gut to the brain through the vagus nerve, a phenomenon observed in animal models of Parkinson’s. Further support for this theory comes from findings that people who have had a surgical vagotomy — where branches of the nerve are cut — have a lower lifetime risk of developing Parkinson’s.

“We know that infrared light can reduce Parkinson’s symptoms and offer protection to brain cells. So, we wanted to test if it could modulate the gut’s microbiome as well,” Liebert said.

Provisional results from the first half dozen Adelaide participants, including Margaret Jarrett, have been promising.

“The six patients . . . showed an increase by up to 20 percent in the favorable microbiome that is associated with obesity reduction and short-chain fatty acid production. And the bacteria associated with rheumatoid arthritis, Crohn’s disease and insulin resistance were all decreased,” said Hosen Kiat, a professor of cardiology at Macquarie University, who oversaw the trial.

“For the last three years, I haven’t been able to smell flowers,” Jarrett said. “But several weeks into the trial, I started to smell my roses, daphnes, and gardenias again, and it was wonderful.”

Another participant, Barry Weldon, 70, had a similar experience. “My sense of smell improved significantly,” he said. “One day, I walked into the house, and for the first time in a long time, I could actually smell the soup my wife was cooking.”

Ron Till, 68, had an even more dramatic improvement. “The trial gave me the ability to sleep again,” he said. “It was amazing.”

Till’s neurologist cautioned him not to get his hopes up before the trial but changed his mind when he saw the results. “He told me it was voodoo medicine and probably wouldn’t work,” Till recalled. “But after the trial, I went back for my three-monthly assessment with him, and he said to me, ‘You’re actually testing better than when you first started with me ten years ago.’”

Retired geologist Sean Kennedy, 76, also experienced an improvement in his coordination and balance. “My juggling skills have improved,” he said.

In a review published in Photobiomodulation, Photomedicine and Laser Surgery, Liebert and her co-authors acknowledge that while the exact mechanism by which light therapy alters the microbiome is unknown, there is definite potential in light therapy.

“The ability of PBM [light therapy] to influence the microbiome (if proven to apply to humans) will allow an additional therapeutic route to target multiple diseases, including cardiovascular disease and Parkinson’s disease, many of which have thus far eluded effective treatment approaches,” the paper concludes.

Kiat is excited by light therapy’s potential. “If we can create non-­invasively a metabolically healthier microbiome through this extremely cheap and easy way, then inflammatory diseases and neurodegenerative diseases should be positively influenced,” he said.

Gold Coast-based GP Mark Jeffery is a clinician who has been using lasers in his practice for more than four years. He says the research supports the use of light therapy for a wide range of diseases, including Parkinson’s, Alzheimer’s, depression, and chronic pain.

“The reality is there are no real side effects from low-level laser therapy, and it’s one of the safest treatments you can ever do,” he says.

Liebert says the promising results they have seen thus far will inform a large, double-blinded randomized control trial planned for this year. “It has the potential to apply to huge fields of medicine,” she said.

Weldon’s neurologist, Chris Kneebone, is keeping an open mind on infrared light therapy’s potential. “We all just have to wait and see what the trial results tell us,” he said.

His advice for people who wish to give it a try for their Parkinson’s? “If you want to give it a go, give it a go,” he said. “I’ve got no reason not to recommend it, but at this stage, I’ve got no reason to think it is helpful either.”

As for Jarrett, she has no doubts that infrared light therapy has helped her. She enjoys pottering around in her garden again and has more energy than she has had for a long time.

“I feel like I could take on the world again,” she said. “My garden has never looked better.”

References

https://pubmed.ncbi.nlm.nih.gov/30074108/

https://pubmed.ncbi.nlm.nih.gov/29247431/

How Intense Light can Protect Against Heart Attacks

How Intense Light can Protect Against Heart Attacks

Researchers at the University of Colorado Anschutz Medical Campus have found that intense light amplifies a specific gene that bolsters blood vessels and offers protection against heart attacks.

"We already knew that intense light can protect against heart attacks, but now we have found the mechanism behind it.”

Study’s senior author Tobias Eckle, MD, PhD, professor of anesthesiology, University of Colorado School of Medicine

The study was published recently in the journal Cell Reports.

The scientists discovered that housing mice under intense light conditions for one week robustly enhances cardioprotection, which resulted in a dramatic reduction of cardiac tissue damage after a heart attack. They also found that humans could potentially benefit from a similar light exposure strategy.

To find out why they developed a strategy to protect the heart using intense light to target and manipulate the function of the PER2 gene, which is expressed in a circadian pattern in the part of the brain that controls circadian rhythms.

By amplifying this gene through light, they found that it protected cardiovascular tissues against low oxygen conditions like myocardial ischemia, caused by reduced oxygen flow to the heart.

They also discovered that the light increased cardiac adenosine, a chemical that plays a role in blood flow regulation.

Mice that were blind, however, enjoyed no cardioprotection indicating a need for visual light perception.

Next, they investigated whether intense light had similar effects on healthy human volunteers. The subjects were exposed to 30 minutes of intense light measured in lumens. In this case, volunteers were exposed to 10,000 LUX, or lumens, on five consecutive days. Researchers also did serial blood draws.

The light therapy increased PER2 levels as it did in mice. Plasma triglycerides, a surrogate for insulin sensitivity and carbohydrate metabolism, significantly decreased. Overall, the therapy improved metabolism.

Eckle has long known that light plays a critical role in cardiovascular health and regulating biological processes. He pointed out that past studies have shown an increase in myocardial infarctions during darker winter months in all U.S. states, including sunnier places like Arizona, Hawaii, and California. The duration of the light isn’t as important as the intensity, he said.

“The most dramatic event in the history of the earth was the arrival of sunlight,” Eckle said. “Sunlight caused a great oxygen event. With sunlight, trillions of algae could now make oxygen, transforming the entire planet.”

Eckle said the study shows, on a molecular level, that intensive light therapy offers a promising strategy in treating or preventing low oxygen conditions like myocardial ischemia.

He said if the therapy is given before high-risk cardiac and non-cardiac surgery, it could offer protection against injury to the heart muscle, which can be fatal.

“Giving patients light therapy for a week before surgery could increase cardioprotection,” he said. “Drugs could also be developed that offer similar protections based on these findings. However, future studies in humans will be necessary to understand the impact of intense light therapy and its potential for cardioprotection.”

Source:

University of Colorado Anschutz Medical Campus

Journal reference:

Oyama, Y. et al. (2019) Intense Light-Mediated Circadian Cardioprotection via Transcriptional Reprogramming of the Endothelium. Cell Reports. doi.org/10.1016/j.celrep.2019.07.020.


Fetuses May be Able to See More Light than you Think

Fetuses May be Able to See More Light than you Think

By the second trimester, long before a baby's eyes can see images, they can detect light.

But the light-sensitive cells in the developing retina -- the thin sheet of brain-like tissue at the back of the eye -- were thought to be simple on-off switches, presumably there to set up the 24-hour, day-night rhythms parents hope their baby will follow. University of California, Berkeley, scientists have now found evidence that these simple cells actually talk to one another as part of an interconnected network that gives the retina more light sensitivity than once thought, and that may enhance the influence of light on behavior and brain development in unsuspected ways.

In the developing eye, perhaps 3% of ganglion cells -- the retina cells that send messages through the optic nerve into the brain -- are sensitive to light. To date, researchers have found about six different subtypes that communicate with various places in the brain. Some talk to the suprachiasmatic nucleus to tune our internal clock to the day-night cycle. Others send signals to the area that makes our pupils constrict in bright light.

But others connect to surprising areas: the perihabenula, which regulates mood, and the amygdala, which deals with emotions.

Recent evidence suggests that in mice and monkeys, these ganglion cells also talk with one another through electrical connections called gap junctions, implying much more complexity in immature rodent and primate eyes than imagined.

"Given the variety of these ganglion cells and that they project to many different parts of the brain, it makes me wonder whether they play a role in how the retina connects up to the brain," said Marla Feller, a UC Berkeley professor of molecular and cell biology and senior author of a paper that appeared this month in the journal Current Biology. "Maybe not for visual circuits, but non-vision behaviors. Not only the pupillary light reflex and circadian rhythms, but possibly explaining problems like light-induced migraines, or why light therapy works for depression."

Parallel systems in developing retina

The cells, called intrinsically photosensitive retinal ganglion cells (ipRGCs), were discovered only 10 years ago, surprising those like Feller, who studied the developing retina for nearly 20 years. She played a major role, along with her mentor, Carla Shatz of Stanford University, in showing that spontaneous electrical activity in the eye during development -- so-called retinal waves -- is critical for setting up the correct brain networks to process images later on.

Hence her interest in the ipRGCs seemed to function in parallel with spontaneous retinal waves in the developing retina.

We thought they (mouse pups and the human fetus) were blind at this point in development. We thought that the ganglion cells were there in the developing eye, that they are connected to the brain, but that they were not really connected to much of the rest of the retina, at that point. Now, it turns out they are connected to each other, which was a surprising thing."

Marla Feller, the Paul Licht Distinguished Professor in Biological Sciences and a member of UC Berkeley's Helen Wills Neuroscience Institute.

UC Berkeley graduate student Franklin Caval-Holme combined two-photon calcium imaging, whole-cell electrical recording, pharmacology, and anatomical techniques to show that the six types of ipRGCs in the newborn mouse retina link up electrically, via gap junctions, to form a retinal network that the researchers found not only detect light but respond to the intensity of the light, which can vary nearly a billionfold.

Gap junction circuits were critical for light sensitivity in some ipRGC subtypes. Still, not others, providing a potential avenue to determine which ipRGC subtypes provide the signal for specific non-visual behaviors that light evokes.

"Aversion to light, which pups develop very early, is intensity-dependent," suggesting that these neural circuits could be involved in light-aversion behavior, Caval-Holme said. "We don't know which of these ipRGC subtypes in the neonatal retina actually contributes to the behavior, so it will be fascinating to see what role all these different subtypes have."

The researchers also found evidence that the circuit tunes itself in a way that could adapt to the intensity of light, which probably has an important role in development, Feller said.

"In the past, people demonstrated that these light-sensitive cells are important for things like the development of the blood vessels in the retina and light entrainment of circadian rhythms, but those were kind of a light on/light of the response, where you need some light or no light," she said. "This seems to argue that they are actually trying to code for many different intensities of light, encoding much more information than people had previously thought."
Source:

University of California, Berkeley

Journal reference:

Caval-Holme, F., et al. (2019) Gap Junction Coupling Shapes the Encoding of Light in the Developing Retina. Current Biology. doi.org/10.1016/j.cub.2019.10.025.


Light Therapy can Benefit Patients with TBI (Traumatic Brain Injury)

Light Therapy can Benefit Patients with TBI (Traumatic Brain Injury)

According to a pioneering study by researchers from the Wellman Center for Photomedicine at Massachusetts General Hospital (MGH), light therapy is safe and has measurable effects on the brain.

Senior investigators Rajiv Gupta, MD, Ph.D., director of the Ultra-High Resolution Volume CT Lab at MGH and Benjamin Vakoc, Ph.D., at the Wellman Center led the study, which was supported by a grant from the Department of Defense (DOD) and published in JAMA Network Open September 14th.

This study is one of the first, if not the first, prospective, randomized, interventional clinical trials of near-infrared, low-level light therapy (LLLT) in patients who recently suffered a moderate brain injury. If further trials support these findings, light therapy could become the first widely-accepted treatment for this type of injury.

TBI is the leading cause of traumatic injury worldwide, and an estimated 69 million people experience such an injury every year. However, there are no treatments for this condition yet, largely because the underlying biological mechanisms are not well understood. It is so challenging to do studies with actual patients in the acute stage of trauma.

"The Gulf War put TBI in the headlines because body armor had been greatly improved by then. But there were still brain injuries caused by the shock waves from high powered explosives.”

Rajiv Gupta, MD, PhD, Director, Ultra-High Resolution Volume CT Lab

For various reasons, the number of TBIs has increased around the globe since then, but effective treatments are still sorely needed. For this study, a special helmet had to be designed specifically to deliver the therapy, an undertaking that required a mix of medical, engineering, and physics expertise.

This multidisciplinary team included Gupta, a neuroradiologist, Vakoc, an applied physicist, and others specializing in developing and translating optical instrumentation to the clinic and biologic laboratories. Both Gupta and Vakoc are also associate professors at Harvard Medical School.

“For this study, we designed a practical, near-infrared treatment based on Wellman Center research and working directly with DOD on the vexing problem of TBI, a condition faced by so many,” says Rox Anderson, MD, the center’s director.

Another challenge was optimizing the wavelength of the near-infrared LLLT.

“Nobody knows how much light you need to get the optimal effect,”

explains Lynn Drake, MD, one of the study co-authors and director of business development at the Wellman Center.

“We tried to optimize the wavelength, dosing, timing of delivery, and length of exposure.”

This was done through a series of pre-clinical experiments led by Anderson. These included multiple preclinical studies led by Michael Hamblin, Ph.D. Anderson and Hamblin are both co-authors of this paper.

Near-infrared LLLT has already been considered for multiple uses, but to date, few if any studies of this technology have been tested and none in patients with TBI.

It has been studied in stroke patients, and Wellman's basic laboratory research suggests it is neuroprotective through a mechanism mediated by specialized intracellular organs called mitochondria. It took several years of research at Wellman to understand the basic mechanism before the clinical trial.

The randomized clinical trial included 68 patients with moderate traumatic brain injury who were divided into two groups. One group received LLLT via the special helmet, which delivered the light. Patients in the control group wore the helmet for the same amount of time but did not receive the treatment.

Vakoc’s team at Wellman designed the helmet. During the study, the subjects’ brains were tested for neuron activity using quantitative magnetic resonance imaging (MRI) metrics, and the subjects also underwent neurocognitive function assessment.

MRI was performed in the acute (within 72 hours of the injury), early subacute (2–3 weeks), and late subacute (approximately three months) stages of recovery. During each visit and at six months, clinical assessments were performed using the Rivermead Post-Concussion Questionnaire, with each item assessed on a five-point scale.

Twenty-eight patients completed at least one LLLT session, and none reported any adverse reactions. Also, the researchers found that they could measure the effects of transcranial LLLT on the brain.

The MRI studies showed statistically significant differences in myelin's integrity surrounding the neurons of treated patients versus the control group. Both these findings support follow-up trials, especially since there are no other treatments for these patients.

The study also showed that light does impact the cells. While it is well established that cells have light receptors, “going into this trial, we had several unanswered questions such as whether the light would go through the scalp and skull, whether the dose was sufficient, and whether it would be enough to engage the neural substrates responsible for repair after TBI,” says Gupta.

It’s important to note, and he adds that for this initial study, the researchers focused on patients with moderate traumatic brain injury. That helped ensure their study could have statistically significant findings because patients in this category are more likely to demonstrate a measurable effect.

“It would be much more difficult to see such changes in patients with mild injuries, and it is quite likely that in patients with severe brain injuries, the effect of light therapy would be confounded by other comorbidities of severe trauma,”

says Gupta.

He adds that researchers are still very early in the development of this therapy. It is unknown if it could be applied to other types of brain injury, such as chronic traumatic encephalopathy (CTE), which has received a lot of public attention over the last few years.

CTE is a progressive degenerative disease associated with a history of repetitive brain trauma such as that experienced by certain athletes, most notably football players.

This study opens up many possibilities for the broader use of photomedicine. “Transcranial LED therapy is a promising area of research, with potential to help various brain disorders where therapies are limited,” says Margaret Naeser, Ph.D., a prominent researcher in photomedicine and research professor of Neurology at Boston University School of Medicine. She was not affiliated with this particular study.

Source:

Massachusetts General Hospital

Journal reference:

Longo, M, G. F., et al. (2020) Effect of Transcranial Low-Level Light Therapy vs. Sham Therapy Among Patients With Moderate Traumatic Brain Injury. doi.org/10.1001/jamanetworkopen.2020.17337.

Half a Trillion-Dollar Market  —  Men.

Half a Trillion-Dollar Market  —  Men.

There’s an emerging disruptor in the beauty industry as companies target a different consumer type to expand the half a trillion-dollar market — men.

Across the globe, men’s adoption of beauty use is already starting to take off. But the trend comes in many different shapes and forms. For beauty companies struggling to find new avenues of growth, it’s a huge opportunity to see whether men are looking for traditional grooming products, discreet moisturizers, beauty balms, or popular light therapy.

According to Allied Market Research, the men’s personal care industry is predicted to hit $166 billion by 2022. According to market researcher NPD Group, just last year, men’s skin-care products alone saw a more than 7% jump in sales and with the category currently valued at $122 million.

“In recent years, the notion that men can’t or shouldn’t be using skin-care products or caring more in general about all aspects of their appearance has been receding,”

Said Andrew Stablein, a research analyst at Euromonitor International, in a research note.

The success of digitally native brands catered directly to men such as Harry’s and popular subscription service Dollar Shave Club reveal

“the average men’s grooming routine isn’t about just shaving, but can be aided by using skin-care products,”

Stablein said.

Even high-end designers like Chanel have jumped on the trend, launching its first made-for-men skincare and cosmetics line known as “Boy De Chanel” last September.

“It seems that mass players are trying to expand their market and gain share in a slowing market by growing their user base,”

Said Alison Gaither, beauty and personal care analyst at Mintel.

This includes tutorials from U.K. makeup artist Charlotte Tilbury and Rihanna’s Fenty brand, which have both put out instructions for guys who want to use makeup subtly for a more groomed appearance.

According to Coresight Research, the Asia Pacific market is now one of the fastest-growing regions for men’s grooming and cosmetic product use. Jason Chen, general manager for Chinese online retail site Tmall, told Coresight that “supply cannot meet the demand for male make-up products across China.”

However, recent data suggests the new generation of beauty consumers prefer a non-binary approach altogether. According to NPD’s iGen Beauty Consumer report, nearly 40% of adults aged 18–22 have shown interest in gender-neutral beauty products and holistic products.

“There are so many … [people] growing up with the idea that you’re not tied to the gender you’re born with,”

Said Larissa Jensen, a beauty industry analyst at NPD.

“Beauty is no longer what you’re putting out as ‘ideal beauty.’ Beauty can be anything, anyone, and any gender.”

In 2016, shortly after Coty acquired CoverGirl, the brand made history with its first-ever “CoverBoy” featuring popular YouTube makeup artist James Charles.

Charles recently found himself in a very public spat with Tati Westbrook, another YouTube beauty vlogger. Coverage of the feud, which began after Charles backed a vitamin brand that was a rival to Westbrook’s own, has been widespread and shows the influence these internet personalities have and how the business has evolved over the past two years.

While Charles may be having his struggles now, as he has lost millions of subscribers, the attention he originally received from CoverGirl sparked similar collaborations by major brands including L’Oreal, who featured beauty blogger Manny Gutierrez, known under the moniker Manny MUA, as the face of its Maybelline Colossal mascara campaign in 2017.

“I think a lot of people misconstrue a man wearing makeup as someone that is transgender or someone that wants to be a drag queen, but it’s not that,”

Guitterez, founder and CEO of Lunar beauty told CNBC.

“I think right now people are still intimidated by the aspect of it.”

Gutierrez’s makeup tutorials and product reviews have attracted nearly 5 million subscribers to his YouTube page. According to a note by the NPD Group, one setting powder product saw a 40% surge in sales after Gutierrez promoted it on his YouTube channel.

“It’s all about inclusivity and encouraging people to be a little more inclusive with both men and women,”

Said Gutierrez.

“I think that as time progresses and you see more men in beauty, it’ll get a little bit better and better.”